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FOREWORD

The 8th edition of the Advanced Autumn school ‘Thermal Measurement and
Inverse Techniques’ is run by the METTI Group (MEsures en Thermique et Techniques
Inverses) that constitutes a division of the Société Francaise de Thermique (SFT, French
Heat Transfer Society).

k % %

Finding ‘causes’ from measured ‘consequences’ using a mathematical model linking the two is
an inverse problem. This is met in different areas of physical sciences, especially in Heat
Transfer. Techniques for solving inverse problems as well as their applications may seem
quite obscure for newcomers to the field. Experimentalists desiring to go beyond traditional
data processing techniques for estimating the parameters of a model with the maximum
accuracy feel often ill prepared in front of inverse techniques. In order to avoid biases at
different levels of this kind of involved task, it seems compulsory that specialists of
measurement inversion techniques, modelling techniques and experimental techniques share
a wide common culture and language. These exchanges are necessary to take into account the
difficulties associated to all these fields. It is in this state of mind that this school is proposed.
The METTI Group (Thermal Measurements and Inverse Techniques), which is a division of the
French Heat Transfer Society (SFT), has already run or co- organized seven similar schools, in
the Alps (Aussois, 1995 and 2005), in the Pyrenees (Bolquere-Odeillo, 1999), in Brasil (Rio de
Janeiro, 2009), in Bretagne (Roscoff, 2011), in Pays Basque (Biarritz, 2015) and in
Porquerolles island (Porquerolles 2019). For this eighth edition the school is again open to
participants from the European Community with the support of the Eurotherm Committee.

Two books are distributed at the beginning of the school. Volume 1 contains the texts used as
supports for the lectures and Volume 2 contains the texts used as supports for the tutorials.
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Tutorial 1. Multispectral pyrometry

N. Horny?, T. Duvaut!, T. Pierre?

1 ITheMM (EA 7548), Univ. de Reims Champagne-Ardenne, 51100 Reims, France.
E-mail: nicolas.horny@univ-reims.fr; thierry.duvaut@univ-reims.fr

2 Univ. Bretagne Sud, UMR CNRS 6027, IRDL, F-56100, Lorient, France.
E-mail : thomas.pierre@univ-ubs.fr

Abstract. This tutorial deals with the multispectral pyrometry for the temperature and emissivity
estimation. This is a contactless technique where the surface radiative emission is recorded by an
appropriate sensor, which delivers a signal proportional to the radiation. The latter, measured within a
certain wavelength bandwidth, depends on the surface temperature. A spectral treatment of the signal
offers the possibility to select one or more narrow ranges to estimate the temperature and/or the
emissivity. This tutorial is divided in three parts: the first one presents briefly generalities about radiative
transfer, emissivity and its dependencies, and the mono-, bi-, and multispectral pyrometry principles
with the algorithms used to perform the estimation; the second part concerns the detailed presentation
of a pyrometer and its calibration; and the third part is dedicated to the multispectral pyrometry, that is
to say with more than two signals.

Nomenclature

Latine letters A wavelength, um or m
c light speed, m-s* p reflectivity
h Planck constant, J-s o Stefan-Boltzmann constant, W-m2-K-4
H constant o noise or standard deviation
k Boltz_mann constant, J-K?! T transmittivity
K amplification factor
L radiance, W-m2-uym-1-sr!
p parameter Indices and subscripts
S signal, arbitrary unit T temperature
T temperature, K noise noise
X sensitivity A wavelength
n Flux density, W.m™2 atm atmosphere
Cy Constant Planck’s law, W.m? eff eﬁeptlve
env environment
C. Constant Planck's law, m.K i index
s sensor
Greek letters 0 blackbody
£ emissivity ‘ directional

Introduction

This tutorial concerns the contactless pyrometry, whose basics are the following: an
appropriate sensor aims at a surface, records a radiative flux coming from its direction, and
delivers a signal (a current for example) proportional to this flux. Among other parameters, the
latter depends on the surface temperature and is defined in a certain wavelenght range. As
previously mentioned, the pyrometry can be used for two different aspects. The first aspect is
practically to perform absolute flux, temperature and/or emissivity measurements itselves. It
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only implies the use of the basic radiometric equations [1] and the Planck law [2]. The second
aspect is different from the first one since it is based on variation of the measured signal. It
concerns the material intrinsic properties characterisation by combining the previous relations
with the heat equation for example. Those two aspects can be associated, but, in most
applications, both the sensor calibration with a blackbody and the Planck law are necessary.

The principal issue is the surface changing emission feature, namely the emissivity, which can
vary versus the wavelength [3], the direction [4], the temperature [5], or the surface state [6] to
name the major. Unfortunately, the experience shows that combination of two or more
dependencies is possible [3]. And what happens to the emissivity is even true for the other
radiative properties, the reflectivity, the absorptivity, and the transmittivity [1]. The emissivity
variation problem is present whatever the pyrometric measurement technique. During radiative
measurement with a broadband pyrometer, such as short wave (SW), middle wave (MW) or
long wave (LW) infrared camera, the collected flux is not spectric, it is integrated along the
whole spectral bandwidth. And the software usually requires an effective emissivity input to get
the temperature, meaning a greybody assumption, which is a strong assumption. If it is not the
case and the radiative properties changes with respect to the wavelength, the error would be
difficult to evaluate. Unfortunately, post-treatment with a spectral emissivity model neither can
be considered. The bispectral pyrometry manages the emissivity problem but leads to other
guestions.

The principle of the bispectral pyrometry is to perform radiative measurements at two different
wavelengths strictly monochromatic as close as possible to each other in order to approve the
greybody assumption, but not to close not to increase the temperature theoretical uncertainty
[7,8]. This methodology is subjective since a compromise must be found. Therefore, several
studies deal between this compromise and the definition of a more objective methodology [9].
The wavelengths choice points out also the signals ratio criterion [7,8]. If the greybody
assumption is valid, a two equations two unknowns system is solved to calculate
simultaneously both the temperature and the emissivity or to estimate them through a least-
square method.

Numerous authors work on the multispectral pyrometry [10], that is to say with more than two
wavelengths. Increase the spectral bandwidth tends to make the greybody assumption less
and less applicable. The system to solve is always a n equations n+1 unknowns system,
namely the n emissivities and the temperature, which is impossible to solve. One possibility is
to use a mathematical function (polynomial, exponential) or a physical function to represent
the behaviour of the emissivity with respect to the wavelength. Litterature presents numbers
of physical functions (Maxwell, Hagen-Rubens, e.g.) [1]. Some emissivity models exist also for
temperature dependency [11] or combine both the spectral and temperature dependencies.

The previous discussions are mainly true when the environment and the atmosphere (i.e. the
space between the material and the sensor) contributions regarding the measured signal by
the sensor is negligible. It is true for two reasons: the material temperature makes their
temperature negligible, and when the material emissivity tends to unity. On the contrary, when
the material emissivity tends to zero (aluminum, copper e.g.), the part of the received flux by
the sensor coming from the environment and the atmosphere and reflected by the material
cannot be negligible. Surface emissivity of the material can also change due to chemical
reactions that can occur during high temperature measurements, such as oxidation [12],

Tutorial 1: Multispectral pyrometry — page 2
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requiring sometimes important experimental condition modifications and the use of vacuum or
transparent inert gas (argon, helium).

This tutorial presents the basics of the multispectral pyrometry for the temperature and
emissivity determination in the case of high and constant temperature measurements of
surfaces of various surface state. During experiments, the environment and the atmosphere
are assumed transparent and their influences negligible. The present text is composed of three
parts. The first one deals with generalities about the mono-, the bi-, and the multipectral
pyrometry: the equations are presented and the influence of the radiative properties and of the
surrounding is discussed. The second part describes the experimental apparatus composed
of a high temperature element with different samples, a spectrometer and a blackbody for the
calibration. Finally and to go further, the third part presents the multispectral pyrometry, the
methodology of the wavelengths selection, some emissivity models, and the limitations of the
methods.

Several termonologies exist in pyrometry. The literature mentions indifferently bispectral or bi-
coulour pyrometry for the temperature/emissivity estimation with the help of two signals, or
multiwavelength or multi-colour pyrometry with more than two signals. In this tutorial, the terms
spectral or wavelength will be prefered.

1. Generalities on multispectral pyrometry

The radiation that leaves a surface of temperature T and emissivity £(4,T) is the sum of two
terms: the part emitted from the surface itself and the part coming from the environment at
temperature Ten reflected by the surface of bidirectional reflectance p’(4,T). Considering the
radiation received by the sensor, these two contributions are weighted by the atmosphere
transmittivity (4, Tam) and one must also consider the atmosphere self-emission of
temperature Tam (see J.-C. Krapez/ T. Pierre lecture for more information or [8]).

In the case of an opaque and isotropic surface and of a transparent atmosphere, the general
thermometry equation is commonly written:

Ls(A4,Tops) = €A, TP, T) + [1 — €A, TILO(A, Teny) (1.1)

where L° is the blackbody radiance given by the Planck law (1.2) in which h = 6.62 x 103* J-s,
k =1.38 x 102 J-K?, and ¢ = 3 x 108 m-s™* are the Planck constant, the Boltzmann constant,
and the light speed, respectively.

29-5
10(A,T) = 22 (1.2)
ekAT—1
In relation (1.1), Terr is an effective temperature obtained from the total radiation. An effective

emissivity can also be introduced by:

Ls(ATerr) = €opp (A Tepp)L3(A Tery) (1.3)

An example is given in Figure 1 representing the theoretical radiations calculated with equation
1.1 considering a radiation emitted from a surface at temperature T = 423.15 K (150 °C) and
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constant emissivity £ = 0.5 and an environment at temperature Ten = 298.15 K (25 °C) in the
spectral range A1 = 8 um — A, = 12 ym. The quantities theoretically measured by the sensor
are the areas beneath the curves in Figure 1 (down to the horizontal abscissa), which are the
integration of equation (1.1) with respect to the wavelength (1.4). In relation (1.4), the surface
and the environment radiations are represented by the grid and the right-slanted lines area in
Figure 1, the total radiation being the sum.

A A ! 2— !
flf Ls(A, Tepp)dd = flf (A, T)L°(A, T)dA + fA12[1 — AT, Top)d2  (1.4)

total surface environment

The plot shows that 81.5 % of the radiation is the surface proper emission the complement
coming from the environment. The effective temperature, or the blackbody temperature, of the
total radiation is Ter = 372 K (100 °C), which is obtained by solving:

Lo(Terr) = [ Ls(A, Teps)dA (1.5)

This effective temperature have no meaning, but allows quantifying the influence of both the
emissivity and the environment temperature regarding the surface temperature. In this
example, there is a difference of about 12 % between the real surface temperature and the
effective one. This difference changes with the surface emissivity and the environment
temperature.

As an example, Figures 2 and 3 plot the evolutions of the total radiance L(Te) and of the
effective temperature Te Of equation (1.4) versus surface temperature T and for different
surface emissivities. The chosen values are the following:

e T=373Kto1073K

e £=0.2to1l.
e Tenw =298 K.

Tutorial 1: Multispectral pyrometry — page 4
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Figure 1. Surface, environment, and total radiations.

These plots really present the importance and the influence of these two parameters and the
errors that could be involved. Considering the total radiation measured by the sensor, it can
happen that the major part belongs to the environment due to the weak emissivity value. The
principal issue is that it is not possible to separate both contributions in equation (1.4).
However, among all the existing commercial pyrometers, in the case of spectral broadband
sensors, different possibilities of tuning are available functions of the applications.
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Figure 2. Evolution of the total radiance versus

surface temperature for different surface

emissivities.

700

800 900 1000 110

temperature, K

Figure 3. Evolution of the effective temperature

versus surface temperature for different surface

emissivities.

Some pyrometers (infrared, thermal guns) only offer the possibility to set the emissivity, which
is the effective ¢,¢, (1.3) since it is not possible to separate the surface from the environment
radiations (1.3). These pyrometers aim an area, collect the radiation from it and typically, an
effective temperature is put up functions of the set emissivity. If both the surface and the

Tutorial 1: Multispectral pyrometry — page 5
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environment temperatures are known, a first approximation commonly used allows to consider
that the surface emissivity is given by:

! 8;‘ T: _Tgnv
£ s% (1.6)
assuming:
4
LO(T) =7 (1.7)

where o= 5.67 x 10® W-m2-K* is the Stefan-Boltzmann constant.

Other pyrometers, such as the bolometric thermal imaging guns, have the possibility to set an
emissivity and the environment temperature Ten. In this case, it is the real surface emissivity
£ since it is possible to separate the surface from the environment radiations. The temperature
indicated by the gun is the real surface one. These imaging guns usually put up a temperature
field image of the screen. However, it is possible to get from a software the signal proportional
to the radiation collected by the sensor.

For efficient pyrometers, such as the infrared camera equipped with a cooled sensor with the
emissivity and the environment temperature, user has the possibility to set the temperature of
the atmosphere, and, if the latter is participating, its distance from the sensor and its
transmittivity such as needed in equation (1.1). The signal is given in digital level unit (DL) or
in temperature if the calibration has been performed.

The great drawback of these spectral broadband pyrometers is that they require a beforehand
approximate knowledge of the emissivity of the surface. The radiative properties tuned in these
pyrometers are constant values. Therefore, it is a major error source since these properties
are liable to change along the whole spectral range (we have already mentioned in the
introduction the other possible dependencies of the radiative properties). This error source is
all the more important that the emissivity is weak and the environment temperature is close to
the surface temperature. Numerous applications such as in building domain encountered this
type of issue. The problem can be lower during high temperature measurements, namely when
the environment temperature becomes negligible compared with the surface one, but still
exists. The bispectral pyrometry proposes some possibilities to get rid of these multiple
unwanted effects.

1.1. Simulation of radiometric signal (T1 - Exercise 1)

In this part, simulations of radiometric signals (RS) are built and used to test the three
mentioned pyrometry technics (see Figure 4). Two spectral ranges are chosen: the shortwave
(SW) between 0.9 pym and 1.7 um representing small commercial spectrometers and the
middle wave (MW) between 3 pm and 4 um simulating MW infrared camera. Two temperatures
of 800 K and 1 300 K are also chosen to represent different configurations. It gives four sets
of experimental data, which can be noised or not.

In this example, a linear model of emissivity is chosen to simulate a variation of emissivity. It
allows to quantify the influence of emissivity uncertainties on temperature.

Tutorial 1: Multispectral pyrometry — page 6
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Figure 4. Experimental data simulations.

On these examples, the RS reflected part could be neglected contrary to the cases of small
temperature of the sample and for higher wavelengths. Sensitivities are numerically calculated
and plotted with different definitions (1.8)-(1.10) in Figure 5.

L

Sensitivity: » =2 (1.8)
Relative sensitivity: Xpp = pz—z (1.9)
Normalized sensitivity: oy = fg—: (1.10)

These sensitivities are used in the next parts to identify temperature and emissivity. One notes
that the first sensitivity (1.8) is used in minimisation algorithm. A strong difference of order of
magnitude could pose a problem such as bad condition number of (X"X)* matrix, but it can
be solved easily by using normalised parameters (i.e. p1 = T/To and p2 = & &).

These sensitivities are very useful to check the validity of estimation. It allows to estimate the
radiance error propagation to the parameters (variance amplification factor):

Up = diag[(XTX)_l]o-noise (111)
where X is the sensitivity matrix of the chosen fitting parameters and onoise is the variance of
the observable. It is also possible to estimate the total uncertainty including the uncertainty of

the supposed known parameter osupp known Of the experience [13] (wavelength, ambient
temperature, calibration factors...):

Osupp known = _(XTX)_lXTXc €g, (1.12)

Tutorial 1: Multispectral pyrometry — page 7
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where Xc is the sensitivity matrix to the parameters supposed known and eg_ is the absolute
uncertainty vector of the supposed known parameters.

Xp = 0B/ap
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Figure 5 Sensitivities to temperature and emissivity.

In Figure 5, the normalised sensitivity to emissivity is 1 because the model is directly
proportional to emissivity (it is not the case when the reflected part is not negligible).

In mono and bispectral pyrometry, the amplification factor, which evaluates the temperature
sensitivity to an error on emissivity, could be calculated, it corresponds to the term

(XTX)~1XxTX, in the equation (1.12).

For multispectral pyrometry, an estimation of uncertainties is made assuming the noise
corresponds to the residuals (in simulations, noise is 0.5 % of the maximum signal). Another
parameter useful to check the validity of measurement is the correlation matrix which non-
diagonal terms represent the angle between sensitivity vectors.

1.2. Monospectral pyrometry (T1 - Exercise 2)

The previous simulated data are integrated over the SW or MW ranges and a minimisation
with temperature as parameter is achieved with Nelder-Mead (NM) (fminsearch Matlab
function) and Gauss-Newton (GN) algorithms for comparison [14]. Temperature identifications
are tested with different initial values. The relative amplification factor K (1.13) is used to
estimate temperature uncertainties (1.14) [13].

K=-(X"X)"'x"X, (1.13)
S =K< (1.14)

Tutorial 1: Multispectral pyrometry — page 8
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In the examples, the amplification factor is between 0.08 and 0.3. As an example, an
amplification factor of 0.2 gives an error of 16 K for an uncertainty of 10 % on the emissivity at
800 K and of 26 K at 1 300 K.

The comparison between NM and GN algorithms allows to see the importance of initial
parameters on final value (see temperature value at first iteration in Figure 6).
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Figure 6. Result of monospectral pyrometry with simulated data. A bias is clearly identified but not
detectable.

On the example in Figure 6, the two figures on the left present the influence of a bias in
hypothesis, even though these curves are not available in monospectral pyrometry. With the
GN algorithm, due to the flat cost function, a started point at low temperature gives a first
correction temperature at a value higher than 10 000 K, which could be fatal in some cases.

1.3. Bispectral pyrometry (T1 - Exercise 3)

For the bispectral pyrometry, the surface temperature is determined from radiations measured
by a sensor at two different wavelengths, especially as monochromatic and as close as
possible. The wavelengths vicinity condition lays on the same emissivity assumption for both
measurements. Theoretically, the two measured signals have the following expression (1.15)
wherei=1, 2.

St = [l (A TIL° (4, T) + [1 — & (A, TIILO(Ay, Te)1 (D) dA (1.15)
where fi(1) is a spectral function estimated by calibration, which depends on the transmittivity
of the optical elements (filters, mirrors, gratings, optical fibre, e.g.) and on geometric factors
(view factors, surfaces, mainly). This function can be a constant (1.16) when using a
spectrometer or have a Gaussian shape (1.17), which is usually the case when using
monochromatic optical filters.

Tutorial 1: Multispectral pyrometry — page 9
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fi(A) = H; (1.16)
_ 1(1—%)2
fi(d) = Hie #\ 7 (1.17)

As an example, Figures 7 and 8 present the radiations measured by a bispectral sensor
considering the same input data as previously. According to relation (1.17), the filters are
characterized by a central wavelength 4, a standard-deviation o, and a amplitude coefficient
Hi. In the case of Figure 7 and 8, the values are the following:

e 1;=1.80pum, o1 =0.0037 um, Hy = 0.45

e 1,=1.85um, oz =0.0028 um, H, = 0.52

35 14

total - T = 373 K
Qsurface (82 %)- T=423K- ¢ =056
environment (17 %) - Tﬂ_ =298 K

F—wial- T, =373k

Fuotal- 7= 371K

filter

N
&

N
S

-
=

f
B
psed
s
Foasaanol
el
S
]
SRl
aetitelaterersty

radiance, W.m‘z-um‘1 s
radiance, W.m™2-pum™"-sr™!

-
(S

5 2 2
X
| v L4 Iy
8 85 9 95 10 10.5 1 11.5 12 898 899 2] 9.01 9.02 998 999 10 10.01 10.02
wavelength, um wavelength, pm wavelength, pm
Figure 7. Comparison between the radiations Figure 8. Focus of the different radiations
measured by the sensor with and without the measured by the sensor for each wavelength.
two filters.

Figure 7 shows the significant difference between the radiation collected by the sensor with
and without the two filters. The ratio between the total area collected without and with the filter
is about 1 000. Nevertheless, Figure 8 shows that the proportion does not change between the
surface and the environment radiations, and so is the effective temperature (about 373 K).

The principle of the bispectral pyrometry is to get at first the temperature from an experimental

. . SEXP . .
signals ratio &;,° = ~&p, if the following assumptions are made:
2

e environment influence negligible;
e constant emissivity.

In this case, equation (1.15) becomes:
S =gl [ 1°(Au T f;(D)dA (1.18)

If the filters are assumed strictly monochromatic and the Wien approximation valid

(AT << 14 000 pm-K), they are defined by a simple amplitude H; determined by calibration, and
relation (1.18) becomes:
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_C2
St = g/ H;C,A7%e 22T (1.19)

Thus, the temperature can explicitly be expressed by equation (1.20). Once the temperature
obtained, the emissivity is easily calculated.

i (1.20)

expHy 12
n [512 Hy /11) ]

If the filters behave like in relation (1.17) or if one considers the Planck law in place of the Wien
approximation, the estimation of the temperature and the emissivity is possible by solving the
criteria (1.21), whatever the Wien approximation is considered or not.

exp

12 Sm e T)| =0 (1.21)

With the same data used in section 1.1, the identification of temperature is done with the
determination of amplification factor. The use of the two wavelengths ratio implies a great
influence of the noise. However, either the spectral range of a spectrometer is used and a scan
in wavelength could smooth the noise [15], or the bandwidth of the filters reduces the influence
of noise. Figure 9 presents results on SW spectral band data at 800 K for 4; = 1.4 um and
A2 = 1.5 um. In this case, the amplification factor (relative to emissivity ratio) is about 1.2.
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Figure 9. Result of bispectral pyrometry with simulated data. A bias is clearly identified but not
detectable.
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1.4. The multispectral (MSP) pyrometry (T1 — Exercise 4)

In this part, the multispectral pyrometry (MSP) is tested with a constant emissivity [16] and with
a linear wavelength dependency emissivity £ = a4 + b. The emissivity and temperature are
deduced by using non-linear least-squares based method in order to minimize of the chi-
squared (y?) criterion, solved by the GN algorithm:

Ng¢

2
22 = |ns P (1) — nh ()| (1.22)

where nz‘p is the radiometric signal measured on the sample. In order to study the quality of

the minimization, the residuals of minimization are shown. The dispersion of the residuals
around zero reveals the quality of the MSP estimation.

With MSP, it is possible to retrieved the input parameters (T, a, b). However, the real problem
is ill-conditioned, it exists a lot of minima, as shown by the valley in Figure 10 (bottom right)
and so it exits several solutions to the inverse problem. Only a good knowledge of the physical
problem allowing real assumptions or regularisation with a priori input will gives confident
results.

®%1 x  Exp. Data —— Emissivity \— Sensitivity to T
35
—— Theo. Data —— Sensitivity to a

6000 \\ 30 —— Sensitivity to b
06

5500
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Normalized Sensitivity

5000

4500 0s
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30 32 38 40 30 32

34 36
wavelength (pm)

34 36
wavelength (pm)

Residues
- N oa
[

Cost function.,

3.0 32 38 2.0

wa\ii:elength zilm)
Figure 10. Result of MSP with simulated data. There is no bias in residues.

2. Real experimental data (T2)

In this second part of the tutorial, data from real measurements of radiance coming from

different samples at different temperatures are blind tested in order to find the temperature.

The principle of the measurement is showed in Figure 9. This multispectral pyrometry method
is based on the comparison between the radiance emitted by the sample and by a heat source
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with known temperature and emissivity ¢, generally a blackbody (¢~ 1), used as reference, in
the same spectral range. Our reference thermal source is a cylindrical blackbody furnace of
reference HGH RCN900.

Optical
" collection

Spectrometer Black body

_ heating sample
holder

.Figure. 9. Experimental device.

An enclosure allows to heat the metallic samples (small circular plates of 25 mm diameter and
3 mm thickness) from ambient temperature up to more than 1073 K (900 °C). Static
measurement (P.1.D. regulation) are applied. A hole drilled radially into the centre of each
sample plate contains a type K thermocouple to allow reference measurement of the plate
temperature. We observe a good homogeneity of the surface temperature lower than
3 K. We test different metallic samples (steel, copper, aluminum) with different surface
conditions (raw, polished, and blackened with a known emissivity paint).

The radiation emitted by the sample or the blackbody is focused on the spectrometer input slit
by means of two similar out-of-axis parabolic mirrors. The spectra acquisition is successively
made, and the change of the radiation source is made by rotation of the first mirror. We used
an infrared Fourier transform spectrometer (Brucker, Invenio R) that allows measurement in a
spectral range from about 1.25 pum to 25 um with a resolution of about 2 nm.

The spectrometer does not give directly radiance and a calibration step is needed. The
calibration process consists in converting the spectrometer DL in experimental radiance by
collecting the signal from the blackbody at different temperatures. It is performed for different
blackbody temperatures chosen to obtain emitted powers similar to those of the heated sample
surface. For example, the power is measured for ten different temperatures of the blackbody
furnace, from 400 K to 800 K every 10 K. The power from the blackbody furnace is measured
by the infrared spectrometer. For each wavelength, the result is plotted as function of the
radiance deduced from the Planck law. The linear regression obtained is the transfer function.
Each wavelength has its own transfer function. The transfer function is used to convert the
energy flux from sample, measured by the spectrometer, into radiance.

The aim of this tutorial T2 is to test algorithms of first tutorial T1 with experimental spectrum in
order to retrieved the temperature.
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Abstract. This tutorial presents the well-known hot-plate technique dedicated to the thermal
characterization of materials. The experiments are transient, the input data and the observable are,
respectively, a heat flux, that thermally excites the material, and a local temperature. Both data are
recorded at the material heated face. The principle of the technique is detailed and the corresponding
theoretical models are presented with appropriate assumptions. The experimental part of this tutorial is
divided in three parts: first, the calibration with a known material, then the tests and the parameters
estimation with materials of different natures. The theoretical models are developed thanks to the
quadrupole formalism and the Laplace integral transform, and the parameters estimation is performed

according to the determinist (Levenberg-Marquardt) fashion.

Nomenclature

Latine letters

cH~ovxD

=3

N X<

thermal capacity, J-kg1-K?

half heating element heat capacity,

J.m-Z.K-l

thickness, m

thermal effusivity, J-m2-K1-s12
current, A

series terms number

thermal conductivity, W-m-1-K-1
contact resistance, mzK-W-1
residuals

electrical resistance, Q
Laplace parameter, st

time, s

temperature, K

voltage, V

Stehfest series terms
sensitivity coefficient, K
Cartesian position, m

Greek letters

EDPESSQAV > ™R

thermal diffusivity, m2-s1
parameter to estimate

sampling time, s

sigmoidal function coefficient
density, kg-m-3

standard deviation, K

heat flux, W-m-2

Laplace transform of the heat flux
digamma function

Laplace transform of the temperature rise
pulsation, st

Indices and subscripts

est

estimation
experimental
room

heating element
per mass unit
constant pressure
initial

reduced
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Introduction

Generally speaking, the characterization of the physical properties of materials is of great
importance for evident reasons. Among many examples, let cite the multiphysics numerical
simulations, which need to be fed by the concerned materials properties in order to predict the
behavior of an industrial process or a building in use.

In the thermal characterization field, three aspects of the material must be considered at first
sight: i) if it is a conductor or at the opposite an insulating material; ii) both the temperature
amplitude and level during its use; and iii) its composition: pure, stratified, composite, porous,
semi-transparent... Having an a priori answer on these considerations will help to choose a
type of characterization technique and consequently a theoretical model, which preferencially
would be purely conductive.

For example, the combination of the classifications proposed by Degiovanni and Jannot in [1]
and [2] allows the reader to choose an appropriate technique to estimate one or more specific
parameters for a geometry, a sensor, and a heat stress given, knowing approximately
beforehand the thermal conductivity range of the material. Both (temperature or heat flux)
sensor and heat stress can be with or without contact and measurements performed in steady-
state or in transient regimes.

The second mentioned point concerns the temperature application and the temperature level
reached during the use of materials. It becomes difficult to characterize materials at high
temperature, as a consequence the physical properties litterature becomes more and more
scarce when the temperature increases. The problems are not only physical but also technical.
Let mention some of them: the properties varying strongly with temperature, the phase
changes, the non-linear radiative exchanges with the environment, the chemical diffusion
between the tested sample and its holder, the thermocouples operating limits, the surface
emissivity variation due to oxidation during pyrometry measurements...

If the materials are heterogeneous or porous, chances are that the problem would not be only
purely conductive but combines convection, radiative transfers, or also becomes a
multiphysics problem. For example, the radiative and eventually the convective heat transfers
must be taken into account in the case of aerogels [3]. Let now consider the hemp concrete. It
is a porous heterogeneous material composed of lime binder, hemp shiv, and also air and
water when it is not dry. At first sight, when the material is dry, only conduction could be
sufficient to study its thermal. On the contrary, if the material is not dry anymore, the mass
transfer equations must be taken into account and consequently a global understanding of its
thermal behavior requires the knowledge of each component properties [4].

In this tutorial, we propose to approach the parameter estimation of common materials using
the hot-plate technique at room temperature. The thermal conductivity range (in S.I. units) is
set between 102 and 10°. It is a transient method using a heating element and a thermocouple
both in contact with the sample. Experimentally, the temperature, named the observable, is
recorded versus time, which is the variable. The heat flux as input data is also recorded. At the
same time a purely conductive theoretical model is developed, which gives the evolution of the
temperature versus time at the same location as the thermocouple. The parameter estimation
is perfomed by minimization of the sum of the quadratic gaps between the experimental and
the theoretical temperatures.
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The first part of this tutorial describes the hot-plate apparatus itself. The theoretical models
and the possible parameters to estimate are presented in detail in the second part. The third
part concerns the sensitivity studies and the correlation between the parameters. Experiments
are presented in the fourth part: first the calibration with a known material (polycarbonate),
then tests with other materials (cork, cellular concrete, rubber). The parameter estimation using
the Levenberg-Marquardt algorithm is not explained.

1. Presentation of the hot-plate apparatus

There is a huge quantity of works dealing with the hot-plate technique. Figure 1 shows a global
sketch of a hot-plate with a heating element of electrical resistance R and surface S stuck
between two identical samples (materials) of thickness e. The heating element is a square
heating electrical resistance of side 101.6 + 0.1 mm? (Minco HK5178R42.9L12A). Insulating
polyurethane foams and aluminium plates of similar section are placed at the rear face of the
sample, and then the whole stack is kept hold with four butterfly screws (Figure 2). The clamp
of the latter is not controlled. To assure strictly the parallelism, some authors used two identical
heating elements [5], this is not the case in this tutorial.

The heating element delivers a Heaviside type heat flux even if others are possible, this is
discussed in Appendix 1. Two type K thermocouples are placed at the centre of the cross
section at the positions z = 0 and z = e and measure the temperatures T?(0,t) et T*"(e,t),
respectively. The thermocouples characteristics are the following: 125 um diameter for the
wires and 300 um for the hot junction. At a given time t = to, a current | flows in the heating
element, which delivers in each sample a heat flux density ¢(t) by Joule effect. During
experiments, the rate of heat flow and the temperatures are recorded every 250 ms. The
temperature T®®(e,t) is only used to evaluate the time validity of the semi-infinite model (see
section 2.3).

>
>

[ aluminum plate

polyurethane foam

‘ heating
& o~ element

Figure 1. Sketch of the half of the hot-plate apparatus including the heating element, the sample
(material), and a polyurethane foam on the rear side (as samples arrangement is symmetrical, only
one side is represented).
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the voltage U
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shunt

Figure 2. Photo of the complete apparatus
and of some samples.

Figure 3. Sketch of the electrical circuit of the
apparatus.

Four materials are available: polycarbonate, cellular concrete, rubber, and cork. Table 1
gathers their dimensions, weight, and density.

Table 1. Properties of the tested materials. The weight and dimension uncertainties are 40 mg and

5 um.
: weight thickness surface density
material (@) (mm) (Mm®x109) | (kgm?)
polycarbonate 91.63 7.73 10.02 + 0.01 1183+ 20
cellular concrete 122.69 19.96 9.98 £0.01 615+ 6
rubber 207.10 14.22 10.25+0.01 1421 +14
cork 10.35 4.08 9.95+0.01 255+ 2

2. Hot-plate theoretical models

This part presents the theoretical models considered as the most faithful as possible with the
experimental conditions and used for the parameter estimation. These models are developped
with the help of the quadrupole formalism in the Laplace domain, as the time integral transform
[6]. The quadrupole formalism is very practical in the case of multilayer experiments, where
lumped bodies, thermal resistance, semi-infinite medium, or even internal source are
encountered. Two models with their asymptotic behavior are detailed:

¢ afinite 1D model with the heating element and contact resistance;

¢ asemi-infinite 1D model with and without the heating element and contact resistance.
These models are compared with a 3D one developed with the help of space integral
transforms, which is not detailled here. For further information about these methods, the reader
should refer to references [6,7].

2.1 Assumptions and heat equation in the material

The heat transfers in the tested materials are assumed 1D along the z-direction, transient, and
purely conductive. The tested materials are assumed dry and homogeneous, and their physical
properties are constant in the experiment temperature range. The problem with models of
higher dimensions is that they must consider new uncertain parameters, such as heat
exchange coefficients due to the radiative and convective exchanges between the sample and
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its environment since they have also the possibility to be correlated to the sought parameters
during parameter estimation.

The heating element is considered purely capacitive of heat capacity Che = preCphe€ne Where
Pre iS its density, ene is its half thickness and c, %, its thermal capacity. The thermal losses

through the heating element wires are negligeable. The contact resistance r. between the
heating element and the material is considered.

The heat equation in the tested material with the boundary conditions can be written as:

0%T(z,t) _10T(z,t)

972 a at @D
aT(0,t)
—k P é(t) (2.2)
T (e, t) _o 2.3)
0z
T(z,0) = Toyt (2.4)

where «is the thermal diffusivity, k is the thermal conductivity, and T is the room temperature,
which is also the initial one. Two boundary conditions are possible in z = e: imposed
temperature or adiabatic. The first one would be possible if a strong capacitive material such
as an aluminum block [8] is placed instead of the polyurethane foam, and thus imposes a
constant temperature during the experiment. The experiment shows that the adiabatic
condition is more appropriate regarding the insulating properties of the polyurethane foam. The
convective heat exchange boundary condition is excluded in the case of this experiment, it
would add an additional coefficient to estimate. The system (2.1)-(2.4) is now expressed in the
Laplace domain knowing that the Laplace transform F of a function f is defined as:

F(z,s) =L[f(z,t)] = fwf(z, t)e stdt (2.5)
0

where s is the Laplace parameter, f(z,t) can be either the temperature difference T(z,t) - Tex OF
the heat flux density #(t). The new system is:

d?0(z,s) s
7 = EH(Z,S) (26)
200 g 2.7)
dz
do(e,s)
=0 (2.8)

with 6z,5) = L[T(Z,t) - Tex] and @(s) = L[4(1)].
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2.2. Finite 1D model
The solution of the differential equation (2.6) is:
0(z,s) = 6,777 + 0,7 (2.9)

where & and & are two constants defined thanks to the boundary conditions and g2 = s/a.
However, considering only the material is not sufficient, the heating element must be taken
into account and eventually the thermal contact resistance between them. Therefore, the
quadrupole formalism is a good tool to work with multilayer stack. The system heating element
/material in the global case where a contact resistance cannot be negligible can be written as
equation (2.10).

6(0, s)] _ [ 1 0] [1 rc] [A B] [B(e, s)

@(0,s) Ches 1 0 1 C Dllaoce,s) (2.10)
heating element contact resistance material
A = D = cosh(qe) (2.11)
inh
B = M (2'12)
kq

C = kq sinh(qe) (2.13)

where #0,s), @0,s), &e,s), and &(e,s) are, respectively the Laplace transforms of temperatures
and heat fluxes at the location z = 0 and z = e. The first 2 x 2 matrix represents the purely
capacitive heating element where Cy. is the half of the heat capacity of the heating element
divided by its area (the setup is symmetrical with respect to the plane z = 0). The second
2 x 2 matrix corresponds to the thermal contact resistance (on a unit area basis) between
heating element and material sample, and the third 2 x 2 matrix is associated to the material
sample. The equation (2.10) is an approximation, which works for materials of thermal
conductivity greater than the polyurethane one. Indeed, in this case, the adiabatic condition
would not be that relevant, thus a more appropriate quadrupole model would be the following:

005 lows 1 b i L5 (& 5] foevas]

heating element contact resistance material insulating mat

With the boundary condition (2.8), equation (2.10) becomes:

1+ tanh(qe) kq
Ches + tanh(qe) (1.Cpes + 1)kq

0(0,s) = @(0,s) (2.15)

In equation (2.15), the thermal excitation @(0,s) = &,/s , where @& is the level of the power
step dissipated by the half heating element on a unit area basis, can be expressed in different
ways (see Appendix 1). The asymptotic behavior of equation (2.15) for the long times (t — «
and s — 0) is given (see Appendix 2) by:
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1 pcprer,
0(0,s) = + 2.16
©.5) 0 s2(Che + pcflte)  s(Che + pcile) (2.16)
And in the time domain, equation (2.16) becomes, for a zero contact resistance:
$o
T(,t ——t+cte 2.17
g—"’" ) Che pCp be ( )

This expression shows a linear behavior of the temperature versus time until the influence of
the other directions (2D and/or 3D) becomes non-negligible. The slope is inversely proportional
to the heat capacity of both the heating element and of the material. Therefore, it is important
to know as good as possible Cy through a calibration procedure.

To compare the theoretical temperature (2.15) with the experimental one, a Laplace to time
inversion is necessary:

T(z,t) = L7Y0(z,5)] + Toxt (2.18)

Tables of conversion are available [9] to get back to the time domain for some relations.
However, numerical inversion programs are also available. This is discussed in Appendix 1.

2.3. Semi-infinite 1D model

When the material is considered semi-infinite, the last two matrices 2 x 2 of equation (2.10)
change and the whole system becomes:

6(0,s)

®(0,s) [Ches 1] 1 rc o) ]

E+/sO(e,s)

~—————_—
semi—infinite material

(2.19)

where E is the material thermal effusivity (kq = Ev/s):

= /kpc{,” (2.20)

The temperature solution at z = 0 is given by equation (2.19).

1+ 1.E\/s

6(0,s) =
0,5) = Ches + (CpeTes + DEAs

®(0,s) (2.21)

The asymptotic behavior of equation (2.21) for the long times (t — « and s — 0) yields (see
Appendix 3):

P9

N _( " %) (2.22)

6(0,s) = 2

S50 Es 3/2

where @ is the power dissipated by the half of the heating element divided by its area.
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Once expressed in the time domain, equation (2.22) gives a linear evolution of the temperature
T(0,t) versus the time square root as presented in equation (2.23). This expression is very
convenient since it allows to calculate the thermal effusivity thanks to the estimation of the
slope of T(0,t) = f(v/t) between the moment when the inertial effects of the heating element
heat capacity are null and until the end of the semi-infinite model validity.

T(0,t) = %ﬁ + cte (2.23)

Both equations (2.17) and (2.23) are useful since they allow to estimate the material heat
capacity and effusivity, respectively. Therefore, the thermal diffusivity « and the thermal
conductivity k are available knowing equation (2.20) and that:

k

2.4. Comparison and analysis with the 3D model

The four temperature expressions (2.15), (2.16), (2.21), and (2.23) are now compared with a
3D model. For this model, let consider the cross-section S = 4 ¢ L, where Zis the width along
the x-direction and L the length along the y-direction. The boundary conditions are the
following:

010.y,2,t) _ 0 (2.25)

dx

oT(l,y,z,t
LG 7L By (2.26)

dx
0T (x,0,z,t)

_— = 2.27
3y 0 (2.27)

0T (x,L,z,t
—k% = hT(x,L,z,1t) (2.28)

The initial data are the following:
e Material:
o k=0.25WmtlK1
o p=1500kgm?3
o ¢yt =1000Jkg™K?
o E=612Jm?2Kts?2,
o e=10mm
e heating element:
o Che=1000Jm2K?
e contact resistance:
o re=102m2K-w
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¢ 3D model considerations:
o h=10Wm?2K1
o Fourier series terms number: 100 [6]

Figures 4 and 5 are the comparison between the temperature evolutions for the 3D (*) and
the different 1D models versus time and time square root, respectively. The material thickness
e is chosen in order to observe the effect of the boundary conditions at z = e during a
reasonable experiment time (teng = tn = 600 s), and to observe the absence of unwanted
multidimensional effects comparing the finite 3D and 1D models (Figure 5). The limit of the
semi-infinite 1D model happens when its temperature still increases while the 1D/3D models
temperatures begin to increase slowly. The dashed plot is the semi-infinite model where the
heating element is influenceless. Its temperature is parallel to the semi-infinite 1D model for a
null heating element influence. Finally, the asymptotic linear finite model (2.17) fits well with
the 1D/3D models once the semi-infinite model does not fit anymore (Figure 4).

6 T T T T 6 T T T T
* 3D model
© 1D model - eq. (2.15)

- = semiinfinite 1D model - C, =0Jm*K" - eq. (2.23)

5 H

semiinfinite 10 model - €, = 1000 Jm? K" - eq, (221)
= asymptotic 1D model - eq. (2.17)

X |4
@ T T > g
3 asymptotic finite 1D E
[ model estimation interval o
Q [
(=8 [=%
§ 5
P #* 3D model
N : ©Q 1D model - eq. (2.15)
1L = = -semi-infinite 1D model - C, =0 Jm>K" - eq. (2.23) ] 1 - _
semi-infinite 1D model - ChE =1000Jm2K"- eq. (2.21) SEijE;?:TSI;meI
asymptotic 1D model - eq. (2.17) estimation interval
0® . : : : 0e ! : -
0 100 200 300 400 500 600 0 5 10 15 20 25
time,s time, v/s
Figure 4. Comparison between the 3D and 1D Figure 5. Comparison between the 3D and 1D
models versus time. models versus time square root.

Two simple parametric analysis concerning the heating element heat capacity Cn. and the
contact resistance r; are presented in Figures 6 and 7, respectively. Figure 6 shows the
temperature inertia increasing and is caused by the heat capacity Cn. augmentation.
Fortunately, the experience shows that the heating element has a low heat capacity value of
about several hundred (in J'm?2:K1) (see section 4). Figure 7 plots the possible influence of
various contact resistances. These resistances are compared with the material one (x), in
order to see whether it is possible to neglect them or not. This resistance is even more weak
with materials of weaker roughness, such as polycarbonate than cellular concrete for example.
However, experimentally, the thermocouple presence between two rigid materials
(polycarbonate, cellular concrete) can create an important contact resistance, compared with
non-rigid materials (cork, rubber), which can deform themselves and diminish it.
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Figure 6. Influence of the heat capacity of the heating element on the temperature evolution for the
finite 1D model (2.15) versus the time square root.
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Figure 7. Influence of the contact resistance between the heating element and the material on the
temperature evolution for the finite 1D model (2.15) versus the time square root.

Now let consider the equations (2.21) and (2.23) expressing, respectively, the temperatures
for the semi-infinite 1D models with (dashed line in Figures 4 and 5) and without (solid line) the
heating element. The former depends on three parameters: the heating element heat capacity,
the contact resistance, and the effusivity, and the latter on the effusivity only. Since the heat
capacity does not belong to the material, it is not a parameter of interest but it must be
absolutely known and estimated by calibration, since it appears in equation (2.17) for the
estimation of the material heat capacity. It is possible to determine it progressively with the
help of a benchmark material of well-known properties by estimating the slope of equation
(2.23), then with equation (2.21) the heat capacity and the contact resistance. Nevertheless a
problem lays on the possible correlation between the latter. This point is discussed in section

3.
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To sum up, it is theoretically possible to estimate all the physical parameters of the material
with the hot-plate technique combining three 1D models, in semi-infinite and finite conditions.
The use of a benchmark material is of prior importance for the estimation of the heating
element heat capacity.

Before the proper parameter estimation with experimental data (section 4), the next section
presents the sensitivity studies of the recorded temperature, namely the observable to the
parameters to estimate.

3. Sensitivity study and correlation between parameters

The actors of the sensitivity study are the parameters and the observable. In the case of the
hot-plate technique, the observable is the temperature recorded at the location z = 0, T*?(0,t),
versus time, the variable. The location of the observable is of great importance since it must
correspond to a place where the variation of a parameter implies a maximum influence on the
observable itself. If the estimation of multiple parameters is at stake, there is a possibility that
the variation of one parameter influences the other ones. Thus, they are correlated and their
estimation could be difficult, even impossible, depending on the correlation level between
them. If no correlation is obvious, the estimation is possible.

The sensitivity coefficients X; (3.1) and more specifically the reduced sensitivity coefficients
X; (3.3) of parameters g are usually used and are given by the equations (3-1)-(3.3) where

M is the number of parameters and N the number of measurements:

dT (0,
X5(t) = ;B 2 (3.1)
aT (0, ty) oT (0, ty)
.
Xp() = : : : (3.2)
aT(0, ty) aT(0,ty)
T L T
aT (o0,
X;(0) = ;B 2 (33)

X’[; is expressed in the same units as the observable (here in kelvin). This is very suitable to
compare a XE given with the measurement noise level, for instance. In our case, the total

parameters to estimate are B = [rc, Che, @, k, E, pcy']". Knowing the fact that two parameters
estimated are enough to have them all, let consider directly the series of parameters
B = [E, PC{;n, Che, rc]-r-

The same initial parameters presented in section 2.4 are considered and simulations are made
with the help of the 1D model (2.15). Figure 8 plots the reduced sensitivities for the series B.
These plots show that the temperature is first sensitive to the heat capacity of heater, which
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reaches a maximum at 20 s then becomes stable after 100 s. Then the temperature seems
sensitive to the contact resistance, which also increase until 100 s and then stands still. The
temperature is also sensitive to the material properties, first the effusivity then the heat
capacity: X; decreases then becomes constant once the semi-infinite assumption is not
validate anymore, then Xp*clr’n decreases once the asymptotic finite 1D model is validate when

the temperature increases linearly with the time (sensitivity to the material thermal
conductivity).
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Figure 8. Reduced sensitivities for the first  Figure 9. X; versus X¢,  for a 0.01 m>-K-W- contact
parameters series B for a 0.01 m?-K-W-1 resistance.
contact resistance.

Globaly, after 100 s, the material effusivity and the heat capacity could be estimated since the
temperature is not sensitive to Cre and rc anymore. The estimation of Cne and rc could be
possible regarding both curves X;: and Xz, ., which do not present the same curvatures in Figure
9. Indeed the evolution of X;;_versus X;, , shows no linear evolution between them.

Figures 10 and 11 have been plotted for a contact resistance r. = 0.001 m?K1-W1, ten times
weaker than before. They show that the sentivity to this parameter is less important meaning
that it could be difficult to estimate it and thus must be neglected. Even if a linearity is obvious
in Figure 11 meaning a correlation between Cpe and r¢, the estimation of the latter would be
difficult since the amplitude of its sensitivity is weak.

It is important to notice that the amplitudes of the reduced sensitivities in Figures 8 to 11 are
function of the level of the excitation. For example, a multiplication by 10 of the heat flux ¢,
will multiply also by 10 the amplitude of the reduced sensivitities. It increases the signal to
noise ratio and would be helpful for the estimation, but a stronger heat excitation increases the
temperature rise and can make the properties thermally dependant.

Let express the sensitivity matrix (3.2) in a more simplified way by (3.4), which is a N x M
matrix where N is still the number of measurements and M is the number of parameters. Thus
i is the time increment and j the parameter increment.
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Figure 10. Reduced sensitivities for the first
parameters series f for a 0.001 m2-K-W-1
contact resistance.

Figure 11. X7 versus X¢,  for a 0.001 m?-K-W*
constact resistance.

So in equation (3.4), the (square) variance-covariance M x M matrix and the standard deviation
aﬁjof the estimated parameters by the ordinary least squares method are defined by:

C = COV(I;) with CU = COV(ﬁi, B]) and O'E;]_ = C]] (35)

They characterize the stochastic behaviour of the presence of an independent identically
distributed noise, of standard deviation ¢ in the signal. They are given by:

cov(B) = a2A with A = (X"X)~* and o5, =0 |4 (3.6)

Large relative standard deviations 9B, /B; may stem from a proportionality between 2 columns
of the sensitivity matrix. So, it is interesting to check the level of their correlation coefficient:

_cov(BuB) _ Ay 3.7)

p.. =
Y opop [AuA

The correlation coefficient (3.7) varies between -1 and 1. Parameters tend not to be correlated
when p;; tends to 0, and on the contrary become more and more correlated when p tends to
+ 1. This coefficient should not be confused with the Pearson correlation coefficient whose
level characterizes the degree of linearity of the output of a model to possible explanatory
variables X; that have random properties, while here the sensitivity coefficients are
deterministic. The interested reader can find more information about this subject in Lecture L5
on Non linear parameter estimation in this series.
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These coefficients depend on the estimation time test = N x & (& being the experimental
sampling time time for example here 250 ms). All the correlation coefficients o are plotted in
Figure 12 for an estimation time varying from 100 s to 1 000 s. It must be helpful to have a first
idea of a pertinent estimation time. For example, the estimation of both Cy. and r. seems difficult
along the whole experiment, since Figure 12 shows that theTC has a value stated between 0.8

and 0.9 and even péchedecreases with time, but pgrc is very high, which demonstrates a strong

correlation between the contact resistance and the effusivity.This remark shows the
importance of a calibration.
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Figure 12. Evolution of the different correlation coefficients p? versus the estimation time.

4. Parameter estimations, measurements and results

First tests with synthetic data are performed to test the estimation procedure. They are created
from the finite 1D model (2.15) presented in section 2.2, then noised. The noise level is
adjusted regarding the experimental one. The parameter estimation is performed through the
determinist fashion using the Levenberg-Marquadt (LM) algorithm. The procedure is repeated
in the second part with real experimental data.

4.1. Tests with synthetic data

The principle is to create synthetic data from the complete model with the expected parameters
to estimate and an additive noise representative of the experimental one. This noise is
assumed null-averaged and normally distributed. Then the procedure is launched with initial
parameters different from the expected ones.

Figures 13 and 14 represent synthetic data obtained with a 0.07 °C noise added to the
theoretical model. They are plotted both versus time and the time square root.
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Figure 13. Simulation of synthetic data from the  Figure 14. Simulation of synthetic data from the
finite 1D model versus time (2.15). finite 1D model versus the time square root
(2.15).

The first step consists in using the semi-infinite model (2.23) in order to estimate the sample
thermal effusivity E, giving a linear evolution of the temperature T(0,t) versus the time square
root with an initial temperature T(0,0) = 0. Regarding the synthetic data (theoretical data
corrupted by a simulated additive random noise) in Figures 13 and 14, the temperature linear
evolution does not begin at t = 0, but later, that is why a constant is added in equation (2.23).
Consequently, the estimation of the effusivity must be time-bounded. The estimation time
interval has been chosen arbitrarily between 100 and 200 s approximately when the semi-
infinite assumption is validated (10 and 14.14 s¥2 in Figures 13 and 14). The initial values are
Eo = 200 Jm?-K*-s12 (and cte = 1) knowing that the expected value is 612 J-m?-K1-s12, Using
the LM algorithm, the estimated effusivity is E = 564 J-m?K*-s2, representing a 7.9 % error
with the expected value, the number of iteration is 1. Figures 15 and 16 show also the
residuals, they highlight the good fitting of the semi-infinite model on the synthetic data during
the estimation time interval, what happens before and after this domain is without
consideration. Let us note also that the inferior time boundary is sooner when the heat capacity
of the material increases and the contact resistance decreases. An asymmetrical device with
a flexible insulator on one side allows to diminish the contact resistance [1].

The purpose now is to use the complete semi-infinite model (2.21) to estimate this time the
heating element heat capacity, the contact resistance, and the effusivity again in a larger
estimation time interval (Figures 17 and 18). This time interval has been chosen between 0
and 200 s. The initial values of the parameters are: Cheo = 100 J'm2K?, reo = 104 m2K-W1,
Eo = 564 J-m?2-K1-s¥2, Finally, with the help of the LM algorithm, the estimation gives, for a
number of iteration still equals to 1 the following results: Cpe = 989 J-m2K7,
re = 0.009 8 m>K-W?, E = 606 J'm2K?!s?2 thus the errors are 1.1 %, 2.0 %, and 1.0 %,
respectively, with the expected values. Note that re is in fact the sum of the contact resistance
and of the resistance of the Kapton sheet covering the resistive wire of the heating element
(about 0.000 5 m?-K-W1).
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Figure 16. Synthetic and theoretical
temperature curves versus time for the
estimation of the effusivity E.

In Figure 19, the use of the asymptotic model (2.17) for the estimation of the sample heat
capacity (pc;,") finishes the procedure. The initial value of the heat capacity is
pcpo = 10 I m3K™ The estimated value is pcy*= 1.46 x 10° J-m=K™, that is to say with a
2.7 % error from the initial value (1.5 x 10® J-m3K1). Figures 20 and 21 plot both the synthetic
data with the finite 1D model with all the estimated parameters.
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Figure 17. Synthetic and theoretical
temperature curves versus time for the
estimation of the effusivity E, the heating
element heat capacity Che, and of the contact
resistance r. in a larger estimation time interval
representing the semi-infinite medium
assumption.
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temperature curves versus time square root for
the estimation of the effusivity E, the heating
element heat capacity Cnre, and of the contact
resistance r¢ in a larger estimation time interval
representing the semi-infinite medium
assumption.
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Figure 19. Synthetic and theoretical temperature curves versus time for the estimation of the
sample heat capacity pc{,”using the asymptotic 1D finite model (2.17).
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temperature curves with all the estimated
parameters versus time.

4.2. Tests with experimental data
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Figure 21. Synthetic and theoretical
temperature curves with all the estimated
parameters versus time square root.

Contrary to the previous section 4.1, estimation from experimental data requiers a reference
material dedicated to the calibration. The latter allows to determine both a corrected cross

section S and the heating capacity of heating

element. Indeed the flux depends on a surface

which may be different from the measured one initially (see section 1). The second parameter
is supposed to be constant whatever the tested material.

4.2.1. Heating element calibration

Two thermal properties of the materials presented in Table 1 have been beforehand
measured: the thermal conductivity k through the guarded hot plate (between 18 °C and
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28 °C) and the thermal capacity c,* with by calorimetry (between 20 °C and 30 °C). Table 2
gathers all results. The calibration has been performed with the polycarbonate samples.

Table 2. Thermal properties of the tested materials obtained from guarded hot plate technique.

material thermal conductivity thermal capacity Effusivity

(W-mt-K?) (J-kgt-K?) (I m2K*ts??)
polycarbonate 0.196 1233 534
cellular concrete 0.164 915 304
rubber 0.380 1258 824
cork 0.047 1604 139

Figure 22 presents the evolution of the temperature (red dots) versus time square root with the
polycarbonate sample. During experiment, the flux is calculated knowing that:

_RI?

== (4.1)

bo

In equation (4.1), S is the cross section, whose value could differ from the simple product of
the length per the width of the heating element. It is possible to correct it with the estimation of
¢o using equation (2.23) representing the temperature asymptotic behavior, the slope being
proportionnal to S*. Figure 22 shows the results between the initial and the corrected cross
section, since the flux RI2/2 (see Figure 3) and the polycarbonate effusivity are known.

E =535Jm2K's™ .8 =0010201 m*-S_ =0.010032 m*
pc : . init : : corr .

- experimental data
12k = == asymptotic semi-infinite model - eq. (2.23)
= estimation time interval

temperature, K

0 5 10 15 20 25 30
time, /s
Figure 22. Estimation of the corrected cross section during the calibration with polycarbonate.

The second part of the calibration concerns the heating element heat capacity estimation. This
time, the complete semi-infinite model (2.21) is used between 0 and 600 s. Figure 25 and 26
are two cases where the estimation is correct or not, that is to say during and after the
asymptotic semi-infinite time interval validity, respectively, approximately fixed at 140 s. During
the valid time interval, the mean and the standard deviation of the heat capacity of the heating
element is (343 + 26) J-m?2-K1, this average value corresponds approximately to the moment
when the residuals are the weakest. This value is retained for the next experiments.
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Figure 24. Heating element heat capacity
estimation at 350 s.

Figure 23. Heating element heat capacity
estimation at 60 s.

4.2.2. Estimation with other materials

Such estimations are presented in Tables 1 and 2, where the four same materials have been
tested. Table 3 gathers the estimation results concerning the effusivity and the heat capacity.
The thermal conductivity and diffusivity are then calculated and compared with the values
obtained through the guarded hot plate technique (Table 2).

Table 3. Thermal properties estimation and calculation results.

material polycarbonate | cellular concrete rubber cork
E (Im2K?tlsl?) 544 316 839 177
re, (10 m?-K-w1) 2.64 4.13 0.10 10
pcyt (10° Jm3K™) 15.35 6.62 21.58 7.52
k (W-m1K? 0.191 0.158 0.326 0.042
a (mm?s?) 0.124 0.250 0.151 0.056

Figures 25 to 29 present results for the tests with the polycarbonate. Figure 25 shows the first
estimation of the effusivity using equation (2.23). This estimation works rather well for every
material. The selection of the estimation interval depends on the thickness of the sample and
of the acquisition frequency, but even with the cork sample of 4 mm, estimation results are
satisfying. The difficulty increases with the estimation of both Cne and r. even if the former is

already known. It happens that it does not work every time during tests with rubber and
polycarbonate samples.

Figure 26 shows the evolution versus time of the correlation coefficients (3.7). It shows a
persistent important correlation between the heating element and the contact resistance but
satisfying decreasing correlations versus time between the effusivity and both the heating
element and the contact resistance. This observation makes difficult the estimation and shows
the importance of the previous calibration.
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the experimental data.

Since Cr is known, it is now possible to estimate the material heat capacity using equation
(2.17). Figure 27 shows an example of its estimation for long times. Finally, once all parameters
are estimated, they are used in equation (2.15) for a global comparison with the experimental
data (Figure 28).

Conclusion

This tutorial deals with the estimation of thermal properties of low conductivity materials
through the hot-plate technique. Once the experimental apparatus and the materials presented
during the first part, the theoretical models and the estimation procedure are developped :
three finite, semi-infinite, asymptotic models are used to calibrate the heating element and then
to estimate the thermal effusivity and the heat capacitiy of the tested material. The chosen
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calibration material is the polycarbonate, and the other materials are cellular concrete, rubber,
and cork.

A part dedicated to the sensitivity study was presented in order to discuss possible correlations
between parameters and thus the possibility to estimate one or more with only one experiment.
Anyhow, the calibration of the heating element heat capacity is performed. Tests with different
materials have mainly pointed out the importance of the choice of the estimation interval, either
for the effusivity or for the heat capacity estimation. Indeed, it is not always easy to determine
the beginning or the end of an asymptotic model. However, the residuals signature and the
correlation coefficients between the estimated parameter yield supplementary information.

It is important to know that the proposed methodology has limitations. Indeed, for instance, the
experimental flux must stay constant and has to be controled during the whole experiment. If
it is not constant, its variation should be taken into account. One other point concerns porous
materials, such as the cellular concrete or the cork. If their relative humidity is too large, purely
conductive heat transfer are not unique anymore and the initial theoretical model is
inapropriate. Degiovanni and Jannot discuss this point in [1].

The estimation procedure presented in this tutorial is only perfomed by ordinary least-squares
coupled with a Levenberg-Marquadt optimization algorithm. This minimization procedure is
deterministic, which means that the uncertainty of the estimated parameter is not calculated
but it must be evaluated from other observations, such as the residuals, the covariance matrix.
Other heuristic methods exist, such as the Bayesian inference which gives estimation results
with an average and a standard deviation. But in any way, the systematic error must evaluated
too.

Appendix 1: The Numerical inversion methods of the Laplace transform

The theoretical models (2.15) and (2.21) are transient and expressed in the Laplace domain
where the Laplace variable s substitutes the time variable t. To get back to the time domain t,
several possibilities exist, such as tables [9] or with the help of numerical algorithms. Three of
those are presented in this section, the algorithms of De Hoog [11], Fourier [6], and Stehfest
[12,13], and their efficiency depend on the type of the heat excitation. Experimentally, an
electrical supply delivers at a given time t = t, a constant current | in the heating element
dissipated by Joule effect. This power ¢(t) can be expressed according to three different ways:

e A Heaviside function:
t<to () =0 (A1.1)
t>1o o(t) = ¢; (A1.2)
e An exponential function:

t<to () =0 (A1.3)

t> 1t b(t) = b; (1 - e‘t_rt") (AL.4)
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¢ A sigmoidal function:
vt = ! Al.5
¢ =bi Ty (AL.5)

Experimentally, the power delivery is not strictly abrupt and discontinuous at time to but
presents a continuity, and the presence of transitional points between 0 and ¢ testifies this
consideration. Consequently, the Heaviside function can be sufficient but is a simplified view.
The exponential function remains discontinuous at time to. The sigmoidal function presents the
advantage to be continuous versus time compared with the Heaviside and the exponential
ones. In the relations (Al.4) and (Al.5), the coefficients rand A must be estimated by ordinary
least squares method with experimental data. According to equation (2.5), the thermal
stimulation expressions transformed in the Laplace domain are given by (A1.6), (A1.7), and
(A1.8) [14] where Y(s) are the digamma functions [9].

—Sto

@(0,s) = ¢l (A1.6)
®?(0,5) = ¢; . GH) (A1.7)
,S) = ¢ — .
s % +s
A4+
v (5 S) v (31) (AL.8)

®(0,s) =

The inversion equation for the Fourier algorithm is proposed with relations (A1.9) and (A1.10).
The readers should consult [6] for more information.

ey = 22D {F(c)/z
e (A1.9)
+ Z(Re[F(c + jw,)] cos(wnt) + Im[F(c + jwy)] sin(wyt))
n=1 nm
On = (A1.10)

An infinite series discretizes the equation (A1.9). Naturally, an infinite number of terms is not
possible and a choice of a finite number must be done with care. This choice is conditioned
also by the terms ¢ and tmax. The accuracy of the inversion depends on this triplet. Anyhow,
one must verify that the condition (A1.11) is respected.

exp(_ZCtmax) f(Ztmax) =0 (Al-ll)

De Hoog algorithm [11], which is not presented here but given during the tutorial, is based on
accelerating the convergence of the Fourier series obtained from the inversion integral using
the trapezoidal rule. In a worry of both inversion quality and of time consumption where a
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compromise can have its importance, the user has the possibility to modify the terms number
of the series.

The inversion with Stehfest algorithm is given by the relation:

N
In(2 In(2
£ = "E )Z V.F [" ';( )] (AL.12)

n=1
where:
Vi=1/12
V, = -385/12
Vs =1279
V, = -46 871/3

Vs = 505 465/6
Ve = -473 915/2
V7 =1127 735/3
Vg = -1 020 215/3
Vo = 328 125/2
V1o = -65 625/2

Figures Al to A3 could present examples of inversion results for the three stimulation types
and for the three algorithms if to is not O like it is commonly done during hot-plate measurement.
The initial time is to = 10 s, the response time in relation (Al1.4) is 7= 0.1 s and the coefficient
A =10 in relation (Al.5). Figure Al concerns the crenel function, which shows that the best
results are for De Hoog algorithm. Fourier presents small oscillations around to but fits correctly
for a value of ¢ = 0.05. Finally, Stehfest fits rather well away from to but presents instability
around; nevertheless, if to = 0, Stehfest works well at t = 0. Figures 4 and 5 present similar
results as for Figure A3.

The average residuals <res> have been calculated between the results obtained with the
relation (A1.13) where the first term is the function in the t time domain and the second term is
the inversion from the Laplace domain. In every case, the average residuals are all estimated
less than + 1073,

N
1 p—
< res >= N;{qb(ti) — L ()]} (AL.13)
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Figure Al. Example of comparison between the different inversion programs from the Laplace to
the time domain for a heat excitation initial time to = 10 s in the case of a Heaviside increase.
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Figure A2. Example of comparison between the different inversion programs from the Laplace to
the time domain for a heat excitation initial time to = 10 s in the case of an exponential increase.
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Figure A3. Comparison between the Stehfest inversion program from the Laplace to the time

domains for a heat excitation initial time to = 10 s in the case of a sigmoidal signal.

Figures A1-A3 show that it is necessary to verify the good accuracy of the inversion algorithm,
since some are more relevant than others. Obviously, in the case of the hot-plate experiments,
the Heaviside function is enough to simulate the heat stress and so is the De Hoog algorithm
for the inversion, and both are now used for the rest of this tutorial. Indeed, for instance, the
residuals study presents results where the average is around zero. Of course, in the case of

other characterization techniques, this choice must be again examined.

Appendix 2: finite 1D model asymptotic behavior

Consider again equation (2.15) in section 2.2:

1+ tanh(qe) kq
= ¢}
9(0,s) Ches + tanh(qe) (1.Cpes + 1kq )

Whent — o, s — 0, it comes that:

8(0,5) = 1+ kq®e 6(0.5)
'S = Ches + kq?eCper.s + kq?e S

As kq* = pcj's, it comes that:

1+ pcyles
0(0,s) = — > ——®(0,s)
pCp eCpetes” + (Che + pcy e)s

As s? <<'s, one gets, for a step excitation F(0,5)=F,/s:
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@, . pe,ed,

0(0:5)= (Cp +pcye)s’  (Cy, +pche)s

(A2.4)

Once expressed in the time domain, relation (A2.4) becomes:

$o pcp edo
(Che + pc{,"e) (Che + pc{,”e)s

T(0,t) = Text (A2.5)

which is the expression of “semi-permanent regime” as proposed by [14], that is to say until
the 2D/3D effects appear. Indeed, the slope in relation (A2.5) can be easily obtained
considering the lumped body assumption:

dT

b0 = (pcie + Che) T (A2.6)

Appendix 3: semi-infinite 1D model asymptotic behavior

Consider equation (2.21) in section 2.3:

8(0,5) _ﬂ 1+ 1.Es (A3.1)
' S CpeS+ (1 +17.Cpes)Es '

Let express the limit development of equation (A3.1) fort — « and s — 0 [1] in the case of a
power step excitation with® (0, s) =@, /s:

&y 1+1.EVs
HE(—);OS) T Es3/? 1 4 Che Che NG (A3.2)
Che
0(0,5) ~ 7 3/2 (1 +1,EV5) (1 20 (A3.3)
Che
G(O,OS) = 3/2 1+ (1.E ? N (A34)
S—
() Ch
6(0,5) ~ ot (rc - E—;) (A3.5)
Once expressed in the time domain, relation (A3.5) becomes:
0 Che
TO,0) 5 VT (rc E2) (A3.6)

The evolution of the temperature is thus function of the time square root. The heating element
inertia and the contact resistance do not influence the temperature when the time tends to
infinity. The slope of relation (A3.6) is inversely proportional to the material effusivity.
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Tutorial 3: Temperature and heat flux measurements
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Abstract. This tutorial is about temperature and heat flux measurement with thermocouples and can
be seen as complementary information to lecture L2. Time constants and errors due to heat leakage
through the connection wire of the thermocouples will be illustrated with experiments. Some rules
will be explained to implement thermocouples in metallic samples in order to realize accurate and
sensitive 1D heat flux sensors. Thin film heat flux sensors will also be discussed.

1. Introduction

One will expect a temperature sensor to be 1) sensitive to temperature, 2) accurate, and 3) with low inertia.
The sensitivity is provided by the thermometric phenomena (see lecture L2 for sensitivity values). The
accuracy comes on the one hand from the calibration and measurement of the thermometric phenomena
and on the other hand, from the correct implementation of the sensors. The first is rather well known, the
latter being often ignored. The inertia of a thermocouple is usually characterized by its time constant which
depends also on the medium in which it is mounted.

In this tutorial, experiments will be performed in order to illustrate sensor time constants, errors due to
incorrect implementation of thermocouples. Then the design of accurate 1D heat flux sensors will be
presented.

2. Time constants of various thermocouples

The behavior of a sensor is characterized by its response to a disturbance in its surroundings. The
response time of a temperature sensor depends on the physical properties (density, specific heat, thermal
conductivity), the transport properties of the fluid (turbulence, pressure, velocity, and physical properties),
and the thermal exchanges (radiation, convection, conduction) between the sensor and the surroundings [1-
3]. A considerable amount of work has been carried out on the transient behavior of thermocouples and
hot/cold wires (standard size, small and micro sizes) in flowing gases and liquids [4, 5].

Different dynamic characterization methods have been used to estimate response times:

- Standard immersion-plunge tests in liquids or gases [6],

- Current injection with sinusoidal, square-wave, 3w methods [3],

- Optical and chopped laser beam methods [7-10],

- Pulsed wire methods [11],

- Rocket plume method [12],

- Convection method with fluid flows [10],
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The thermometric device must show characteristics in order that interaction between sensor and
medium reaches the equilibrium temperature in a sufficiently small time so that the temperature variations
of the medium, during this same time, are negligible.

The thermal inertia is usually quantified by a characteristic time # which can be the time constant ¢
or time response ;-

T (0)

v

tx t

Figure 1: Typical temperature sensor response

Most of these works neglected the effects of conduction along the wires and radiation between the sensor
external surface and the surroundings. Investigations have been devoted to the determination of the classical
wire time constant t considering convection heat transfer only:

2
s PuCud” )
42, Nu

Where d is the diameter of the sensor, pw and ¢y are the density and the specific heat of the sensor
material, A is the thermal conductivity of the fluid and Nu the Nusselt number.

If T(O) is the initial temperature and T(oo) the equilibrium temperature, the time response tx is defined
such that :

e The time constant 7, is defined with x = 1/e 20,368 (e = 2,718...)

e The k.10-M time response, t;, is defined with x = k.10°N.

The quantities 7 or ty depend not only on the sensor but also on how it is mounted in or on the medium

and how it is connected to the measurement device. So talking about the time response of a sensor does
not make sense if we don’t consider the medium in or on it is mounted.
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Figure 4 : Temperature recording in mercury ( 12°C)

In this tutorial, we investigate th

e time constants of thermocouples since this type of sensor is very

common due to their easy implementation, fast response, and low cost. Four type K thermocouples are
considered with two diameters (80 and 200 um) and with or without stainless steel sheath. They were

plunged successively into three di
pump of a temperature-controlled

fferent mediums. Stirred water was provided by a built-in circulating
water bath (at 12°C). A 5¢cm?® mercury beaker was maintained also at

12°C. The quiet air was the room air (at about 20°C). Figures 2 to 4 show the measured transient
temperatures for the 4 thermocouples plunged in the three different mediums. The transient measurements
are performed using a low-voltage recorder (Yokogawa, 16 channels, 100 kHz).
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Table 1: Time constants (ms) of common type K thermocouples with various diameters, with and without
sheath, and mounted in various mediums.

Thermoc_:ouple—> No sheathed Sheathed*
Mediumi
® =0,08 mm O =0,2mm O =0,5mm O =2,0mm
quiet air 595 2330 30980 42720
mercury** 45.2 38.3 129.3 1208.5
stirred water 16.4 14.0 28.5 698.1

* : stainless steel sheathed thermocouple with junction welded at the extremity of the sheath
**: mercury k=8.3 W.m™1.K?; ¢c,= 140 J.kg.K?, p=13600kg.m= ( a= 4,36 10°m?s?); water (a= 1,68 10"
m2s?)

The measurements clearly show the influence of the medium on the time constant of thermocouples. The
time constants range from a few ms to several seconds. In addition, one can observe several features:

e As obtained with lumped capacitance model (z=pcyL/h), the time constant decreases for
increasing heat transfer coefficient. This can be observed when switching from quiet air to
mercury and then to stirred water.

e The higher the diameter of the sensors, the higher the time constants are

Table 2 shows some additional values of the time constant measured with various temperature sensors
[13].

Table 2: Time constants from literature for various temperature sensors [13]

Sensor Medium Time constant (s)
mercury-in-glass thermometer ¢=9mm quiet air 450
mercury-in-glass thermometer $=9mm quiet water 4,8
metallic thermoresistances in a ceramic sheath $=2mm stirred water 0,5
sheathed thermocouples (¢ =0.5mm) - thermocouple junction hot water 0,035
inside the insulation-

sheathed thermocouples (¢ =0.5mm) — thermocouple junction hot water 0,015
welded on the sheath

Metallic thin film (a few pum thick) deposited on a substrate - a few tens of us
(thermocouple or thermoresistance)

3. Discussion about the time constant

Dahl and Fiock [14] and Alford and Heising [15] have discussed the problem of lead conduction from
a spherical bead along the wires for a thermocouple cooled in a static gas from a temperature T; to a
temperature T.. The time constant t includes the effect of convection and conduction:

-1
3h
= Y+ K
’ (pwcwd ] (3)
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Melvin [9] adopted a similar point of view in the precedent work and developed a simple approximate
solution of the heat conduction equations integrating the heat transfer coefficient as the ratio between the
thermal conductivity of the gas and the radius of the thermocouple junction. For gases of relatively low
thermal conductivity the time constant of the thermocouple was expressed as:

34,
T=|———
2, C, d? (4)
Benedict [16] established an expression of the time constant accounting convection, conduction and
radiation:

(1_l//w)
1+74ﬂ8W
T

g
Where w is a conduction correction factor [5, 17], £ a radiation error factor [5], & the thermocouple
emissivity and Tg the gas temperature.

()

:TC

If the thermal environment includes effects of convection, conduction and radiation, the response of the
sensor is not a first-order. Pandey [2] and Dantzig [18] suggested that a simple time constant can be
expressed as:

r=C,+C h} (6)
where C; and C; are correlation constants dependent on the properties of the thermocouple and hey is the
average heat transfer coefficient between the thermocouple external surface and the air flow.

Actually, the fact that different kinds of heat transfers are involved should lead to a global time-constant in
which the different phenomena contributions are included [19, 20]. As a consequence, the ability of a
thermocouple to follow any modification of its thermal equilibrium is resulting from a multi-ordered time
response which more accessible experimental parameter remains the global time constant.

The multi-ordered temperature response of a thermocouple can be represented by the general relation [1]:
T -T
9

=K, exp —L -K,exp _L ..... K, exp _L O
T =T 2! (2 7,

Where T; is the initial temperature, Tq is the fluid temperature. The value of the constants Ki, Ko, ..., K, as
well as the time constants =, o, ..., , depending on the heat flow pattern within the thermocouple and the
surrounding fluid. Kerlin et al. [21] showed that the time constants 7 andz are the most important.
Cimermam [6] used the same result for real Pt-resistance temperature-sensor in dynamic measurement
relative to natural and petroleum gas processes.

4. Errors due to heat losses through the connection wires of the thermocouples

To avoid temperature bias due heat loss along the thermocouples wires, one usually considers that a
thermocouple has to be mounted along an isothermal line started from the junction and on a length equal to
100 times the metallic wire diameter ¢ of the thermocouple. If it is not the case, one may obtained heat loss
which will change locally the temperature of thermocouple junction. In lecture L5 section 2.3, a thermal
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model was designed to study the effect of various parameters on this systematic error. In this section, an
experiment will be used to quantify this temperature measurement error.

A PMMA sample of 76.8 mm diameter and 20mm thickness is instrumented with 7 type K thermocouples
of diameter 0,2 mm as shown on fig. 5. Three thermocouples #1, #2 and# 3 are correctly mounted: starting
from the junction, the thermocouples are along isothermal lines at least on a length of 20 mm. On the
contrary, thermocouple #7 is perpendicular to the isothermal lines and thermocouples #4, #5 and #6 are
close to the edge. Two temperature controlled thermal baths are used to prescribe a constant temperature
difference (40°C) between each two sample faces

60°C Amm =
Smmn ol 4
5 4 2 7.5 19,8°
5 -3 6
.
20°C =

Figure 5: experimental setup with an instrumented PMMA sample

Table 3 : steady state temperature measurements from experimental setup of fig.5

* mm| # |T,°C| # | T,°C| # | T,°C
5 11499 | 4 43,5
10 2 | 405 | 5 354 7 | 348
15 3 1315 | 6 27,7

o*: distance between thermocouple and the heated face
From the measurement obtained with steady state, one can observe that:

e The temperature discrepancy between thermocouple perpendicular (#7) and parallel (#2) to the
isothermal lines is very important (5,7°C !), this result from the heat losses through the metallic wire
of thermocouple #7 inducing a local temperature decrease at its hot junction. This happens for a 0.2
mm thermocouple, one would have got much more error for metallic sheathed thermocouple where
the metallic cross-section of the complete thermocouple is typically 6 times higher than the one of
the bare thermocouples (thickness of metallic wall: 10 %¢ and metallic wire diameter 18 %¢ [22])

e Thermocouples #4, #5 and #6 are closed to the edge (4 mm only) , the connection wires being in the
thermal boundary layer therefore they show lower temperature measurement, from 3.3 to 6.4°C less
compared to the correct ones ( #1, #2 and #3). As illustrated on fig. 6 , thermocouples #4, #5 and #6
show however a linear distribution. So, one should remind that the fact that the temperature
distribution is linear is not a criterion to say that temperature measurements are without bias. In fig.6,
the temperature shift between the two sets of thermocouples is important, the slopes being slightly
different.
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Figure 6: Temperature distributions within t(he F)MMA sample (data from tab.2)

5. Heat flux sensor with wire thermocouples and thin film

Heat flux sensors (HFS) are very useful for the understanding and the control of the thermal phenomena
coupled or not with other physical, chemical or mechanical processes. HFS should be judiciously designed
to reduce source of bias in heat flux measurement while ensuring the highest sensitivity. The heat flux can
be measured by direct methods (see lecture L5). However very often these sensors are mounted directly on
the surface to characterize and the sensors create disturbance in the surface/environment heat exchange.
There exists one type of HFS which was designed to limit this perturbation [23] especially for 1D transient
measurement. As shown on fig.7, a set of microthermocouples is mounted inside the medium at different
locations [23]. Practically there are welded on one of the two half shells (fig. 8 [24]).

The discussion in this section will be about the location of the implemented thermocouples. The HFS should
have at least 1 thermocouple if the 2" boundary condition is well known otherwise at least 2 thermocouples
are needed. Bourouga [25] has found that the first thermocouple should be located taking into account the
following inequality:

10r<x,<66r (8)
with r the radius of the hole where the thermocouple is mounted.

The first inequality (10 r < x1) comes from the fact that 96% of the temperature drop due to
macroconstriction is within an hemisphere of radius 10 r [26]. With this condition, the heat flux ¢ or
temperature at the front face will not be affected by the presence of the first thermocouple.

The second inequality (x1 <66 r) comes from inverse methods consideration. The computation time step At
(supposed here equal to the experimental one) should not be too small to avoid too much sensitivity to
measurement errors. Typically, the condition aAt/x;%>0.01 should be respected [26], where a is the thermal
diffusivity of the HFS material.
Therefore, one obtains:

X2 <100aAt 9)

The smallest possible At value which can be defined as the response time of a thermocouple which is also

the characteristic time of the already described 10r hemisphere. As shown by Cassagne [27], this
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characteristic time is defined by At= 44r¥a for a 95% development of the thermal constriction within the
10r hemisphere. Using this At value in (9), one can obtained: x; <66 r

One should notice that for sensitivity enhancement during heat flux estimation, the first thermocouple
should be as close as possible to the front face (x; 10 r).

For the second location (x2) corresponding to the 2" thermocouple or the 2" boundary condition, its value
should be as large as possible also for sensitivity concerns [5].

Figure 7: Heat flux sensor [23] Figure 8: Heat flux sensor [24]

Recent developments in heat flux measurement concern thin film HFS with some advantages such as very
accurate locations of the temperature sensors (fig. 9 [28] and fig.10 [29]).

Figure 9: New HFS with thin film technology (wire thickness 30um) [28]

Figure 10: Thin film heat flux sensor (wire thickness 12um) [29]
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5. Conclusion

In this tutorial, we have illustrated the role of the medium in the temperature sensor time constants and also
the errors due to the sensor implementation. Temperature and heat flux sensors should be designed and
implemented in order to minimize the various sources of systematic errors and also to increase the
sensitivity for the estimation of thermal properties, heat transfer coefficient, heat flux ... Some insights on
the most favorable thermocouples location were also presented.
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Abstract. This training session is devoted to the use of infrared thermography for
building applications. This session will be divided into two parts. The first part will
concern metrological aspects of infrared thermography and more precisely the
determination of surface temperature, and its associated uncertainty, using an infrared
camera. Uncertainty sources due to the technical characteristics of the camera
(measurement noise, non-uniformity, thermal drift) and to the physical properties of
opaque surfaces (emissivity, roughness) will be considered. Surfaces of different
emissivities will be characterized (spectral emissivity curves will be provided). A
particular attention will be paid to the determination of the mean radiant temperature.
The work proposed in this first part will be based on theoretical aspects presented in
the L4 lecture (“Measurements without contact in heat transfer”). The second part of
this training session will be devoted to the study of heat transfers in a building wall
using infrared thermography. A reduced scale model of a building wall including
thermal irregularities will be used. The work proposed will concern (i) the detection of
thermal irregularities such as thermal bridges (or lack of insulation) and (ii) the
estimation of multi-layer wall heat losses (including thermal irregularities). Practical
work will be done using several infrared cameras equipped with cooled detectors or
micro-bolometers arrays.

List of acronyms:

EOF:
FOV:
FPA
IFOV:
IR:
IWI:
HFM:
LWIR:
MWIR:
NDT:
NETD:
NUC:

Empirical Orthogonal Function
Field Of View

Focal Plane Array
Instantaneous Field Of View
InfraRed

Internal Wall Insulation

Heat Flow Meters

Long Wave InfraRed domain
Medium Wave InfraRed domain
Non-Destructive Testing

Noise Equivalent Temperature Difference
Non-Uniformity Correction
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PC: Principal Component

ROI: Region Of Interest

SNR: Signal-to-Noise Ratio

SVD: Singular Value Decomposition

SWIR: Short Wave InfraRed domain

Nomenclature:

T
A

O X 1 - e s UQqQ o
o

XR € C T

temperature, K

wavelength, um

emissivity

Stefan-Boltzmann constant, 5.67 x 108 W.m2.K*
distance, m

heat flux, W

heat flux density, W.m=2

intensity, W.m2.srt

thermal resistance, m2.K.W-!

thermal conductivity, W.m2.K1

thermal diffusivity, m2.s

specific heat, J.kgt.K?

density, kg.m=3

heat exchange coefficient, W.m2.K1

wall thermal transmission coefficient, W.m=2.K?
linear thermal bridge thermal transmission coefficient, W.m*.K1

punctual thermal bridge thermal transmission coefficient, W.K™!

Sub-scripts and upper-scripts

1D
app
env
i, e

mes

sound region (1D transfers) mir mirror
apparent rad radiative
radiative environment ref reference
indoor, outdoor S surface
measured tb thermal bridge
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1. Introduction

Infrared thermography is nowadays extensively used for the inspection of buildings [Balaras
2002, Kylili 2014, Grinzato 1998, Pajani 2012]. This technique allows detecting the presence
of thermal irregularities, of moisture, or of air leakage [NF 13187]. Thermal irregularities can
come from the local absence or lack of thermal insulation, or from the presence of thermal
bridges. The presence of thermal bridges can be due to the structure of the building (for
instance to the link between a floor and a facade), or to the presence of the thermal
insulation mechanical fixing system, so-called “integrated thermal bridges” [Farkh 2009]. For
practical reasons, the work proposed in the second part of this training session will concern
only the observation and characterization of integrated thermal bridges. The work will be
based on the use of a reduced scale model of a building wall.

The work proposed in this training session will be based on theoretical aspects presented in
the L4 lecture (“Measurements without contact in heat transfer”). As seen during this lecture,
an infrared camera does not directly measure the surface temperature of an object. The
temperature is computed on the basis of the measured intensity on one hand and on the
knowledge of influencing parameters: surface emissivity, mean radiant temperature,
transmittance and temperature of the surrounding atmosphere. In the first part of this training
session, we will discuss about the importance of the surface temperature correction by
considering measurements on surfaces of variable emissivity, and by evaluating the
associated uncertainty.

Before the extensive presentation of the work proposed in this training session in sections 4
(Tutorial first part: Determination of surface temperature and its associated
uncertainty using an IR camera) and 5 (Tutorial Second part: Detection and
characterization of thermal bridges inside a building wall), some theoretical supplements
and additional information not included in to the L4 lecture are presented in section 2, (for
metrological aspects) and in section 3 (for building applications). These information have to
be read before starting the training session.

2. Metrological aspects concerning the use of IR cameras for the
measurement of surface temperatures

2.1 Infrared cameras properties
The aim of this section is to provide additional information on the technical properties of
commonly used IR cameras and most particularly on cameras that will be used in this
tutorial. As said before, some aspects already presented in L4 lecture will not be commented
anymore in this text.
2.1.1 Detectors and Spectral bandwidth

First of all, we have to recall that historically, infrared cameras can be classified into two
families:

- cameras using a unique IR detector coupled to a mechanical scanning system to
form an image of the thermal scene (IR scanning cameras);
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- cameras using an array of detectors (FPA cameras): in that case, the thermal image
is obtained by concatenating the individual responses of each elementary detector in
a 2D matrix.

At this time, the most frequently used cameras are the FPA ones. The spectral response of a
camera depends mainly on the material used for the detector and on the material used for
the optics. Some examples of typical spectral response curves are plotted in Figure 2.1.

Some detectors are sensitive in the wavelength domain comprised between 2 and 5 pum
(InSb detectors for instance), so-called Band Il domain or MWIR domain. Some other
detectors (QWIP or microbolometers for instance) are sensitive in the wavelength domain
between 7 and 14 pm (so-called Band Il domain or LWIR domain). Microbolometers are
thermal detectors, which means that the thermal response of each individual detector is due
to the variation of its temperature depending on the absorbed flux. These detectors are not
cooled, but an internal system integrated to the camera allows compensating the
temperature drift of the detector. QWIP detectors are quantum detectors, i.e. based on a
conversion of absorbed photons in electrical carriers. These detectors have to be cooled to a
low temperature (typically around the liquid nitrogen temperature, 77K) to obtain a high SNR.
In most cases, this cooling is ensured using a Stirling engine.

LWIR and MWIR domains correspond to spectral bandwidths of high transparency of the
atmosphere as seen in Figure 2.2. According to the Wien’s law, LWIR detectors are well
adapted to temperature measurements around ambient temperature (300K), whereas MWIR
detectors are better suited for higher temperature applications. However, due to the higher
sensitivity of MWIR detectors, some of them can be used also for ambient temperature
measurements. Other wavelength domains can also be used for higher temperature
applications (SWIR or visible domains), as illustrated in Figure 2.3.
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Figure 2.1 Typical response curves of some IR detectors
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Figure 2.2: Transmittance of the atmosphere; Adapted from [Cojan 1995]
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Figure 2.3: Planck’s law and spectral bandwidths of IR cameras
2.1.2 NUC

The non-unifomity correction (NUC) has to be performed in FPA cameras in order to correct
the fact that all individual detectors have not exactly the same response. The effect of NUC is
illustrated in Figure 2.4. We compare in this figure two thermal images recorded before and
after a NUC. The thermal scene observed is a blackbody plate intended to be at uniform
temperature. Images were recorded using an uncooled microbolometer FPA camera. We
consider data in the ROI (black rectangle part) drawn on both images. After correction, we
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observe a small variation of the mean temperature (21.5°C versus 21.0°C), and a slight
decrease of standard deviation on the ROI (0.7°C versus 1.1°C).

219°C

Figure 2.4: Comparison of two thermal images recorded before (left) and after (right) NUC;
uncooled p-bolometer FPA camera

2.1.3 NETD

As seen in the previous section, non-uniformity correction allows reducing differences
between responses of elementary detectors of a FPA matrix. However, it still exists a
measurable difference between individual detectors, although a unique response is expected
(for instance when observing an extended plane blackbody for instance). These differences
also come from the electronic circuitry and can be assimilated to a random noise. Figure 2.5
presents an example of the response histogram of the pixels of a FPA camera. The standard
deviation of this distribution (plotted in digital levels in Figure 2.5), can be converted in a
temperature difference, called NETD. Thus, this parameter represents the spatial noise in a
thermal image. A temperature difference lower than the NETD cannot thus be detected.
NETD values depend on the detector and on the optic used. The lowest NETD values are
generally obtained using cameras equipped with cooled IR detectors.
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Figure 2.5: Example of the computation of an IR camera NETD
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2.14 FOV and IFOV

The Field Of View (FOV) of an infrared camera represents the Horizontal and Vertical
angles, namely HFOV and VFOV respectively, which can be viewed through the IR lens
used. The Instantaneous Field Of View (IFOV) represents the view angle corresponding to
only one pixel. The IFOV is generally expressed in milliradians (mrad), and allows computing
the size d (in millimeters) of the smallest element that can be seen in a thermal scene,
according to the simple following relationship:

d(mm) = IFOV(mrad) x D(m) (1)

where D is the distance (in meters) between the thermal scene and the lens of the camera
(see Figure 2.6).

d=2mm

Figure 2.6: FOV and IFOV of a camera; incidence on the size of smallest object that can be
seen on a thermal scene; example for IFOV = 1 mrad.
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Figure 2.7: Spectral response curve of FLIR SC7300L; FLIR Data (Left); Spectral response
curve of FLIR A325 camera with 25° HFOV; FLIR Data, from [Krapez 2012] (Right)
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2.1.5 Technical data of camera used in this tutorial

In this tutorial, we will use three infrared cameras: FLIR SC7300L, FLIR A325, FLUKE TI32:
spectral response curves of two of these cameras are plotted in Figure 2.7. For the Fluke
TI32 camera, we will consider a curve response close to the FLIR A325 has both detectors
are micro-bolometers arrays. Two of these cameras, are provided with two optics of different
FOV. Technical characteristics of these devices are provided in Table 1.

Table 1: Technical characteristics of IR cameras used in this tutorial

Camera FLIR SC 7300L FLIR A325 FLUKE TI32
Optics Normal Wide angle Normal Normal Wide angle
FOV 22° x 17° 44° x 36° 25° x 18.8° | 23°x17° 46° x 34
IFOV 1.2 mrad 2.4 mrad 1.36 mrad | 1.25 mrad 2.5 mrad
Number of pixels 320 x 256 320 x 256 320 x 240 | 320 x 240 | 320 x 240
NETD <20 mK <20 mK <50 mK 50 mK 50 mK
Minimum distance 60 cm 30 cm 40 cm 15cm 7.5cm
Spectral bandwidth | 7.7-93um | 7.7-93um | 7.5-13um | 8-14 um 8—14um

2.2 Emissivity measurements

As seen in lecture L4, the emissivity of a surface is the ratio between the radiance of the
considered surface and the radiance of a blackbody at the same temperature. We will give in
this section some additional information concerning the key factors influencing the emissivity
and the ways to measure it. Finally, we will illustrate the importance of the knowledge of this
parameter for the determination of the temperature of a surface using an IR camera. We will
consider in the following that all materials considered are opaque in the wavelength domain
considered for the observation.

221 Parameters influencing the emissivity of materials
Many parameters may have an influence on the emissivity of a material surface. First of all,
conducting materials such as metals have generally a low emissivity at ambient temperature
and in the infrared domain, thus these materials are good reflectors. On the contrary,
dielectric materials exhibit generally a high emissivity in the same conditions.

2211 Radiation wavelength

Materials presenting a constant emissivity value upon wavelength are called gray-bodies or
gray surfaces. Real gray surfaces do not exist but some materials have an emissivity
presenting only small variations versus wavelength at least in a waveband larger than the
bandwidth of the camera. In such situation, we can consider valid the gray-body assumption
for a given camera and a limited temperature domain. Three examples of variation of normal
emissivity upon wavelength at room temperature are presented in Figure 2.8. In the A\ band
corresponding to the sensitivity of the FLIR SC7300 camera, PVC and Aluminum emissivity
remains quite constant, whereas emissivity of glass is varying between 0.7 and 1. For the
PVC case, we can consider a constant emissivity on a wide range of wavelength (3 to 16
um). Thus, we can consider a same emissivity value using a MWIR or LWIR infrared camera,
whereas distinct emissivity values have to be considered for glass (We must recall here that
glass can be considered as an opaque material only for 4 > 5 pm).
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Figure 2.8: Example of normal spectral emissivity at room temperature for three smooth
surface of PVC, Glass and Aluminum [Ibos 2016].

2.2.1.2 Temperature

The temperature can modify the spectral emissivity of a surface, especially when a phase
transition of the material occurs. However, in the case of building applications, temperature
variations of materials are small. Thus, the influence of temperature on spectral emissivity is
generally neglected.

Nevertheless, in the case of non-gray surfaces, the apparent emissivity computed in a limited
wavelength band corresponding to the sensitivity bandwidth of the camera may vary with the
temperature. This is due to the displacement of the Planck’s law curve as a function of
temperature. This phenomenon is illustrated in Figure 2.9 for the case of Alumina. A non-
negligible variation of emissivity is observed versus temperature. Moreover, as said before,
total emissivity (range 1-50 um) is different from apparent emissivity computed in the LWIR
domain (Band IlI).

0.78 Spectral reflectance (%)

0.76 4

0.74 4

—=—1-50 ym
—e—Band Il 20

o704
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4 6 8 10 12 14 16 18 20

0.68

26'%0 360 32IO 3-5:0 SéO 350 4(')0
T(K)

Figure 2.9: Example of variation of emissivity versus temperature for a non-gray surface of

Alumina (Left); spectral reflectance of Alumina (Right); data from [Monchau 2013].
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2.2.1.3 Direction of emission

For smooth and homogeneous materials, directional emissivity can be determined from
theoretical relationships and the complex refractive index n = no + jy [Lorrain 1979, Kauder
2005]. In the case of a planar diopter plane, emissivity for two polarizations €// and €1 is
defined in Figure 2.10. The directional emissivity is the arithmetic mean of €// and L without
polarization.

Directional emissivity of smooth surfaces of PVC, Glass and Aluminum (materials presented
in Figure 2.8) is presented in Figure 2.11. Theoretical relationships are compared to
measurement performed using the SPIDER instrument [Ibos 2016]. Emissivity values are
obtained directly using a FLIR SC7300 camera. For both dielectric materials, emissivity value
is maximum at normal angle. This emissivity remains quite constant for angles lower than
45°. Then, the emissivity value drops down to zero for grazing angles. This behavior is
typical for dielectrics. Thus, it is commonly recommended to perform measurements with an
IR camera for viewing angles comprised between +45°. For Aluminum surface, emissivity
increases with viewing angle and then vanishes for angles close to the grazing incidence.
This behavior is typical for metals.

E A (92
(n % cos (#) — - ) X (n x cos(#) —1/1— ”“tff) )
;‘// - l - . 2 . 2
(H ®cos (/) +1/1— 5“153)") X (n xcos(f)+14/1— 5“1&3’)")
) = 1-—
Mo+ 1z ((‘():&(H) +nxy/1— —”“jff") X ((-os (B)+nx4/1— Smn(f)-)

Figure 2.10: Definition of directional emissivity for a planar diopter; adapted from Refs
[Monchau 2013] [Monchau 2018]
2

0.15

Directional emissivity

Directional emissivity

/ \ \ ‘ “‘ i 0 / “\ 0 \
Figure 2.11: Directional emissivity of three smooth surfaces of PVC, Glass and Aluminum
[Ibos 2016]
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2214 Surface roughness and oxidation

The emissivity of a material depends on the roughness of its surface. The increase of the
surface roughness tends to increase the surface emissivity. This point has to be considered
especially for metals that exhibit a very low emissivity when their surface is smooth.
Moreover, the increase of surface roughness induces a change of reflection. Smooth
surfaces are specular, whereas rough surfaces are diffuse. An example of variation of
emissivity of Aluminum versus roughness is presented in Table 2. It is noticeable that the
surface emissivity is increased tenfold, due to the fact that the surface roughness is close to
the wavelength of the maximum of emission given by the Wien'’s law at 300K.

Oxidation of metallic surface tends to increase the emissivity. However, the increase is not
constant whatever the wavelength. For instance, we have previously seen the difference
between emissivity of Aluminum (see Figure 2.8) and of Alumina (see Figure 2.9).

Table 2: Example of variation of the emissivity of Aluminum surfaces due to roughness;
values taken from Ref [Monchau 2013]

Surface Roughness Rq (um) | Total hemispherical Total normal
emissivity Emissivity
Polished Aluminum 0.18 0.057 0.050
Sand-blasted 8.9 0.44 0.52
Aluminum
2.2.2 Short review of existing methods for the measurement of emissivity

There are a lot of existing methods for the measurement of the emissivity of materials. These
methods can be divided into two families: calorimetric methods on one hand and radiative
methods on the other hand. We will consider in this section measurement methods
applicable for opaque materials. A complete survey of existing methods, standards and
commercial portable devices was proposed recently in [Monchau 2018].

Calorimetric methods can be used in static (constant temperature) or transient regime.
Calorimetric methods allow measuring the total hemispherical emissivity of a material as all
flux coming from the sample at all wavelengths and directions is considered in the thermal
balance. In static regime, the sample surface temperature and the heating power provided to
the sample must be measured to compute the emissivity. In transient regime, the thermal
capacity of the sample has also to be known.

Radiative methods can also be divided into two families: direct or indirect methods. For direct
radiative methods, the flux emitted by the surface is directly measured by an IR detector.
These methods require generally a second measurement onto a blackbody or a reference
surface (of known emissivity) at the same temperature than the sample. The use of a
modulated source allows measuring the emissivity without use of an absolute reference.
Spectral measurements can be performed if the detector used is an IR spectrometer.
Measurements in a spectral band can be performed by using thermopile or other IR
detectors.
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For indirect radiative methods, the emissivity is computed from the directional-hemispherical
or the hemispherical-directional reflectance of the sample. Then, the directional emissivity is
computed using the Kirchhoff’s law for opaque materials:

e/ =1—p/™ or &/ =1- p"/ (2)

In that case, the general principle is to illuminate the sample with an IR source and to
measure the reflected flux with an IR detector. The most common method consists in using
an IR spectrophotometer equipped with an integrating sphere (see Figure 2.12). This method
allows performing spectral measurements. An alternative method consists in using a source
with a modulated temperature. In that case, measurements are performed in a spectral band,
for instance using thermopile detectors. In both cases, additional measurements on
reference samples of known emissivity have to be done. All portable devices allowing to
perform in-situ emissivity measurements are using an indirect radiative method.

IR Detector

Rotating Mirror

Position SAMPLE Position REFERENCE

Figure 2.12: Principle of measurement of normal-hemispherical reflectance using an
integrating sphere and a rotating mirror to perform a correction of the sphere factor; Adapted
from [Monchau 2013]

Fens

Figure 2.13: Principle of the determination of the mean radiant temperature. Surrounding
radiation: (a) heterogeneous medium, (b) uniform, isotropic medium (approximation of the
real surrounding). lllustration from Ref [Datcu 2005]

lens
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2.3 Mean radiant temperature

As the emissivity of real surfaces is not equal to unity, a part of the intensity emitted by
surrounding surfaces is reflected by the observed surface and collected by the IR detector.
The part of this reflected flux increases as soon as the emissivity of the surface decreases. It
is thus important to quantify this surrounding flux in order to compute the surface
temperature.

231 Principle

In practice, the simplest way to quantify the flux coming from the surroundings of a thermal
scene consists in placing an infrared mirror directly in the FOV of the camera. This mirror has
to be highly reflective and as diffuse as possible in order to reflect the flux coming from all
directions. The surrounding of the thermal scene is considered as a blackbody at a particular
temperature so-called mean radiant temperature. This principle is illustrated in Figure 2.13.

2.3.2 Practical estimation method

The ASTM E1862-97 standard proposes to use a rough aluminum foil to collect the flux
coming from the surroundings. In that case, the mean radiant temperature is directly equal to
the apparent temperature on the mirror surface. This method was tested for the
determination of building facade temperature (indoor and outdoor conditions) in ref [Datcu
2005]. This method is applicable for building applications because the emissivity of building
materials is generally high and the difference between mean radiant temperature and
surrounding temperature is generally lower than 20K. For other situations where surface
emissivity is low and/or mean radiant temperature is far from surface temperature, this
method is no longer applicable. This will be illustrated in the following section.

18,087

L H S A

i

ARSI TR

Figure 2.14: Visible and thermal image of a building facade with a low emissivity cladding

2.3.3 Importance of the knowledge of the mean radiant temperature and

emissivity
Figure 2.14 represents a photograph and a thermal image of a building fagade of the Paris-
Est Créteil University. The upper floor of the building was recently restored and a low

emissivity cladding was used, whereas the rest of the building surface is made of concrete.
We can see on the thermal image that the apparent temperature on the restored part is
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roughly equal to the sky temperature, because the main flux coming from this surface is
reflected flux.

In order to illustrate quantitatively the importance of the surface temperature correction, we
have plotted in Figure 2.15 the difference between the apparent temperature and the true
temperature of a surface (in °C) as a function of the surface emissivity and of the difference
between mean radiant temperature and surface temperature. As said before, we obtain small
temperature corrections only for high values of emissivity and/or small differences between
mean radiant and surface temperature.
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Figure 2.15: Difference between apparent and true temperature of a surface (in °C) as a
function of surface emissivity and of difference between mean radiant and surface
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Figure 2.16: Example of IWI typology
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3. Infrared thermography for the diagnosis of buildings thermal insulation
3.1 Generalities concerning heat transfers inside building walls
3.1.1 Thermal resistance and thermal transmittance

A building wall is generally constituted of a stack of n different layers. Each layer i has a
thermal resistance R; depending on its thickness e; and on the thermal conductivity k; of the
material used:

Ri = Z_ll (3)

The total resistance of the wall Ruai (expressed in m2.K.W%1) is the sum of the thermal
resistances of the n layers:

Ryan = ?:1% (4)
Materials used in building walls depend on the typology of the wall and on the expected

value of the thermal resistance. We will focus in this tutorial on the IWI typology which is the
most frequently used in France, whose structure is presented in Figure 2.16.

The thermal transmission coefficient U of a building wall represents the power lost by a wall
for an area of 1 m? and a temperature difference of 1 K between the indoor and the outdoor
ambiances (in steady-state conditions). U coefficient is defined by:

Us ————— (5)

Rsi + Ryall + Rse

where Rsi and Rse are the internal and the external superficial thermal resistances
respectively. For the computation of U coefficient, Rsi and Rse values are defined by [ISO
6946] standard: Rsi = 0.13 m2.K.W"* and Rse = 0.04 m2.K.W,

An example of typical values of thermal resistances of layers of a wall for a IWI structure in
accordance with the actual french thermal regulation [RT 2012] are given in Table 3.
According to Equations (4) and (5), this example leads to a wall thermal resistance Ryan =
4.012 m?2.K.W and consequently a thermal transmission coefficient U = 0.239 W.m2.K 1,

Table 3: Example of values of thermal resistances of a building wall (IWI structure)

Layer Material Thickness (m) Thermal Thermal
conductivity resistance
(W.mLK?Y (m2.K.W1)

Interior facing Plaster board 0.013 0.25 0.052

Insulating Glass wool 0.12 0.032 3.75

material

Structure Concrete 0.2 1.0 0.2

material

Exterior facing Facade coating 0.01 1.0 0.01
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3.1.2 Thermal bridges

The insulation of building walls cannot be continuous due to the necessary presence of doors
and windows, of junctions between walls and floors or to the insulating layer fixing system,
for instance. All of these irregularities are called “Thermal bridges”, as they lead to a local
increase of heat losses and consequently to the U-coefficient value. An increase of the
energy demand due to thermal bridges up to 30% can be sometimes observed [Theodosiou
2008].

3.1.2.1 Junction and Integrated thermal bridges

It is of common use to distinguish between two kinds of thermal bridges: junction or
integrated thermal bridges. Junction thermal bridges (PTL in French) are mainly due to the
junctions between the fagade and interior walls or floors, and also to the junction between
doors and windows with the fagade. These junctions induce a discontinuity in the insulating
layer. The impact of junction thermal bridges on the insulation of a wall is strongly dependent
on the typology of the building [Farkh 2009 ]. Integrated Thermal bridges (PTI in French) are
due to the mechanical system used to fix the insulating material onto a facade wall. This
includes for instance the presence of wood stud, metallic rails, metallic or plastic pins... Two
examples of visualization of additional losses due to thermal bridges by IR thermography are
provided in Figure 3.1.

Wall with
integrated
thermal bridges

Figure 3.1: Two examples of visualization of additonal losses due to termal bridges by IR
thermography: junction floors/facade wall (left image), integrated thermal bridges due to
metallic rails and screws (right image, from [Douguet 2018])

3.1.2.2 Heat losses in thermal bridges

In order to quantify the importance of a thermal bridge in the global heat losses of a wall or a
building, two thermal bridges transmission coefficients are used: w and y coefficients. v
coefficient quantifies additional thermal losses due to linear thermal bridges, whereas y
coefficient quantifies additional thermal losses due to punctual thermal bridges [ISO 14683].
As illustrated in Figure 3.2 for the case of a linear thermal bridge, the total heat flux ¢t
through a building wall can be separated into a 1D heat flux (¢ip, flux without any thermal
bridge) and an additional flux due to the presence of the thermal bridge, labeled ¢w.
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Figure 3.2: Scheme of additional heat flux (from [Francois 2019])
The y coefficient is defined by [Frangois 2019]:

Y= Ly X (Uy — Usp) (6)

where Uy, is the transmission coefficient of the entire wall (i.e. including the contribution of
thermal bridges), Uip is the transmission coefficient without thermal bridges and Ly is the
width of the thermal bridge impact zone (heat transfers are supposed to be 1D outside this
zone). Introducing the heat flux due to the thermal bridge as defined in Figure 3.2, definition
of y coefficient can be written as follows:

_ __ %w
Y= Ly X ATje (7)

where L; is the thermal bridge length and AT, the temperature difference between indoor
and outdoor ambiances. In the same way, the y coefficient is defined by:

X= Sep X (U — Usp) (8)

where Sy, is the area of the thermal bridge impact zone (heat transfers are supposed to be
1D outside this zone). Recently, Asdrubali et al proposed to define an impact factor Iy to
quantify the importance of a thermal bridge [Asdrubali 2012]:

L = Uep in static COTLdlthle: I = Oeb 9
w= 2 o= L 9
1D ®P1D

Hence, linear and punctual transmission coefficients can be expressed as a function of this
impact factor :

Y=Ly X Upp X (Igp— 1) (10)
X= St X Up X (Up—1) (11)

3.2 Different ways to investigate heat losses using infrared thermography

There are two ways to investigate heat losses through a building envelope using IR
thermography: the passive method and the active method. The passive method consists in
observing a part of a building (facade wall, roof, window...) from inside or outside of the
building with an IR camera, during the “normal” use of the building. The observation is
generally punctual, but it can sometimes also be monitored during a given period of time. In
the active method, an additional thermal load is applied to a part of a building wall or to the
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indoor air in order to create a controlled heat flux inside the investigated part of the envelope.
In that case, the IR observation is monitored during a given period of time.

3.2.1 Passive method
3.21.1 Requirements

In the case of the passive method, heat losses throughout a building envelope can be
observed by IR thermography only if there existing a temperature gradient between the
inside and the outside of the building. Thus, this method can be used only if the building is in
its “normal” use. Moreover, the passive method is strongly dependent on the conditions of
observation: indoor air temperature, local weather conditions, orientation of the investigated
facade... Thus, the most suitable period for passive observation is the winter period, i.e.
when there exists an important difference between interior and exterior air temperatures.
Moreover, to cancel the possible influence of solar radiation on a facade (especially for
southern facades), observations have to be done preferably in the early morning. An
illustration of the dependence to weather conditions of a passive IR observation on a
southern building facade is presented in Figure 3.3.
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Figure 3.3: lllustration of the dependence to weather conditions of a passive IR observation
on a southern building facade; top: four IR images of the same fagcade; bottom: plot of
temperature vertical profiles along the fagade corresponding to each IR image; see text for
details
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In case N°1, the apparent temperature is higher on each floor/external wall junction as
expected when the indoor temperature is higher than outdoor temperature (observation was
done in the early morning). In case N°2, an opposite effect is noted, because the observation
was done in the evening of a sunny summer day. In case N°3, it is not possible to visualize
any thermal bridge as the observation was done during the inversion of the heat flux inside
the wall (i.e. during the night). In case N°4, no thermal bridges are visible due to the fact that
an outdoor insulation of the building was done. This example illustrates that in passive mode,
conclusions on the insulation of a building wall cannot be done if we do not pay attention to
observation conditions.

3.2.1.2 R or U measurements using passive IR thermography

An international standard was proposed recently to evaluate the U transmission coefficient of
building walls using IR thermography [ISO 9869-2]. This method is based on the work of
Kato et al [Kato 2007] and is a variation of a preceding standard [ISO 9869-1] using only
contact temperature sensors and Heat Flow Meters (HFM). The principle of the method is
presented in Figure 3.4. The computation of the U coefficient is based on the measurement
of the indoor surface temperature T of the wall using an IR camera. The knowledge of the
heat exchange coefficient h and the indoor and outdoor “environment” temperature, T, and
Tne, require the use of additional devices as seen in Figure 3.4. U coefficient is then
computed as follows:

(12)

[SO-9869-2
Method

H - meter

Environnement
temperature
measurement

/T

[

IR Camera
FLIR® SC-7300

«— Airtemperature

* L sensor
A T,
1
7 Ths
i 1Ty Fluke©
A To Data-logger

Figure 3.4: Principle of the measurement of U transmission coefficient of a building wall
according to 1ISO 9869-2 standard
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As this relationship is valid only in static conditions, it is proposed in the standard to average
measurements during a period between 3 to 6 days, depending on weather conditions. It is
seen from Equation 12 that the accuracy of the method is directly dependent on the
evaluation of the heat exchange coefficient.

Another method (named SEID method) was proposed by D. Pajani to evaluate in-situ the U
coefficient of a building wall [Pajani 2011]. The method consist in placing an additional
insulating material (Extruded Polystyrene for instance) of known thermal resistance Rger On @
part of the wall to characterize (see Figure 3.5). After equilibrium is reached, an IR camera is
used to monitor surface temperatures of the wall surface Ts and of the additional insulating
material Tsrer. The method requires also the knowledge of the mean radiant temperature Ty
This method has the advantage to be simple and that only apparent surface temperatures
are required. Then, the thermal resistance of the wall is computed as follows:

Tmri— T
R = RRef X mri sRef,app (13)
TsRef,app_Tsi,app

SEID Method

IR Camera
FLIR© SC-7300

Thermocouples

Fluke©
Data-logger

Figure 3.5: Principle of the SEID method

Another possibility, proposed by to estimate thermal resistance of a building wall is to record
the surface temperature of a fagade using an IR camera during a period of about 7 days and
to measure simultaneously additional parameters such as indoor and outdoor air
temperature and absorbed solar heat flux. Then, a simplified 1D heat transfer model is used
and the thermal conductivity and capacity of an equivalent homogeneous wall are identified
using an inverse method. Wall thickness has to be known and Rsi and Rse are fixed to
conventional values [ISO 6946]. An illustration of the method is proposed in Figure 3.6.

A comparison of the applicability of these methods in the case of the characterization of
facade wall of an occupied house was proposed in [Ibos 2015]. Estimated thermal

resistances were varying from 2.1 to 4.5 m?2.K.W* depending on the method used, whereas
the expected value was equal to 3.8 m?.K.W. Uncertainties were about 1 m?.K.W?. The
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most accurate method was the one using an inverse method for the estimation of the thermal
resistance. However, this method requires the longest measurement duration.
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Figure 3.6: Principle of the estimation of the thermal resistance of a building wall by IR
thermography and an inverse method,; left: simplified 1D model; right: estimated and
measured temperature after estimation; from [Ibos 2015].

3.2.1.3 Thermal bridges characterization

As presented in section 3.1.2.2, the Iy incidence factor can be used to quantify the local
increase of the thermal transmittance of a wall due to a thermal bridge. Using an IR image, it
is possible to compute this factor as proposed in [Asdrubali 2012]:

ZN:1(Ti - Ts,p)
th = NI; (Ti - Ts1p) (14)
where T; is the air temperature, N is the number of pixels in the considered area, Tsipo the
wall surface temperature in the undisturbed zone and Tsp the surface temperature of pixel p.
The main drawback of this method is that it requires the computation of the absolute
temperature which is dependent on many factors, particularly the surface emissivity and the
mean radiant temperature. Recently, it was proposed to simplify the evaluation of Iy, making
the following assumption [Francois 2019]:

oipt
Itb = rad (15)
$1p

which consists in considering only radiative fluxes. This assumption is true if the air temperature is
close to the mean radiant temperature (which is realistic indoor) and if the radiative and convective
heat exchange coefficients can be considered as uniform on the portion of the wall studied (also
realistic given the small surface temperature difference between thermal bridges and sound areas).
The surface emissivity must be uniform as well in the considered area, but its value is not required as
it is possible to work only with surface and mean radiant apparent temperatures:

rad

= ‘7( siapp — Tenv app) (16)
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Tenv,app Can be easily estimated according to the procedure described in section 2.3. Finally, it comes
[Frangois 2019]:

— i TS,tb,app - Tenv,app
Itb - Zplxels Ts1D,app — Tenvapp (17)
The method was recently tested in laboratory conditions in an experimental building wall with
known integrated thermal bridges, as seen in Figure 3.7.

133 1) Metal rail ) 2) Metal pin ) 3) Wood stud
i o8 3L.5 3L.5 3L.5

31

Ter (°C)
Tapp (C)

0 10 20 0 5 10 15 0 10 20

Figure 3.7: left: IR image of en experimental wall including known integrated thermal
bridges; right: averaged apparent temperature profiles used for the computation of Itb factor
[Francois 2019]

3.2.2 Active method
3.2.2.1 General principles
Active IR thermography consists in recording the variation of temperature of a surface when
it is submitted to an artificial thermal excitation. This approach belongs to the family of Non-
Destructive Testing (NDT) techniques [Balageas 2016, Maldague 2001]. Active IR has many
advantages compared to passive thermography in the case of the inspection of buildings:

- There is no need for existing thermal gradient between the interior and the
exterior of a building, thus this method is less sensitive to weather conditions.

- It is sometimes possible to work only with variations of temperatures that are
less affected by uncertainties on influencing parameters, particularly on the
surface emissivity and mean-radiant temperature.

- The applied thermal power or energy density can be controlled precisely and
adapted to the experimental situation to obtain a significant Signal to Noise
Ratio and to prevent any damage to the investigated structure.

However, active thermography has also some drawbacks:

- Itis required to use additional devices to perform the thermal excitation.

- Itis required to record and analyze a sequence of thermal images.
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Thermal excitations can have different shapes summarized in Table 4. For in-situ building
applications, the use of “flash” excitation is limited to applications devoted to the
characterization of the surface of a wall. For instance, it was applied to analyze the presence
of coatings, of non-emergent cracks or even to reveal the presence of moisture or salt in
walls of historical monuments [Mouhoubi 2016]. Sine wave or random excitations are at this
time used mainly for the characterization of materials, but not applied with IR thermography
for in-situ building application.

Hence, the most frequently used excitation for building inspection is the square-pulse
excitation, mainly for its simplicity to realize in in-situ conditions. For instance, it was used to
determine the thermal resistance of building walls in laboratory or in in-situ conditions. In
works of Refs [Larbi Youcef 2011] and [Yang 2017], the thermal excitation was provided
using halogen or IR lamps to heat a limited part of a wall. The use of an optical excitation
allows observing simultaneously the surface temperature variation with an IR camera (front
face measurement). In [Chaffar 2012], the outside side of a wall was heated with an
instrumented heating plate while the IR camera was used to record the temperature variation
onto the opposite face (rear face measurement). Another possibility is to use heating devices
to increase the air of a room and to visualize heat losses using an IR camera. This principle
was used for instance in [Douguet 2018] to detect integrated thermal bridges in building walls
independently of weather conditions.

Table 4: Classical thermal excitations used in active IR thermography

Method Name Excitation shape | Advantages / Drawbacks

Flash Rapid

Important temperature increase
Expensive devices

Limited to the wall surface

Square-pulse Most simple to use

Low SNR

High power density and excitation duration to
be adapted to limit temperature increase
Possibility to use only the heating phase (Edge
excitation)

O 0O 0|0 0O 0 O

o

o Most accurate
o Low power densities
o Long measurement durations

Sine wave

wave

Random Sequence HHHH |’” Intermediate between square-pulse and sine

3.2.21 NDT Analysis methods

To analyze the thermal images sequences recorded an active IR thermography experiment
on a building wall, it is possible to use common NDT analysis methods. When a thermal
irregularity is present inside a building wall, a temperature difference is observed on the
surface during or after the thermal excitation as illustrated in Figure 3.8. The interest of active
thermography is to increase artificially the temperature contrast on the surface and to
observe it whatever the atmospheric conditions. A non-exhaustive list of these methods is
presented in Table 5. These methods are useful to detect defects inside a material. Their
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However, at this time, these methods are not very often used for building applications.

Excitation

$43333

Excitation

RN

e

S LY

Insulatinginclusion

Figure 3.8: lllustration of the principle of detection of a thermal irregularity inside a material

Al D

~ \

« Sound » (1D) material

or a building wall

Conducting inclusion
(case of integrated thermal bridge for instance)

>
>

Table 5: non-exhaustive list of NDT analysis methods

Method name

General Principle

Some References

High-order Computation of a mean, variance, skewness or | [Madruga 2010]
statistics kurtosis image of the sequence [Vrabie 2012]
Contrast Computation of absolute, relative or running | [Krapez 1994]
methods contrast  (temperature difference) between | [Maldague 2001]

irregularity and “sound” areas

Take into account only temperature variation

since the beginning of excitation
PPT Perform a FFT of the temperature evolution of | [Maldague 1996]
(Pulse-Phase each pixel [Maldague 2001]
Thermography) | Obtain Modulus and contrast phases images at | [Dumoulin 2011]

each excitation frequency

Contrast phase images are low sensitive to

surface emissivity variations

Requires a spread frequency thermal excitation
TSR Logarithmic polynomial interpolation of | [Shepard 2003]
(Thermographic | temperature evolution of each pixel [Balageas 2015]
Signal Obtain polynomial coefficients maps [Dumoulin 2011]
Reconstruction)
SvD Acts like a data compression method [Rajic 2002]

(Singular Value
Decomposition)

Thermal images sequence information is
compacted in a few images (Empirical Orthogonal
Functions) and associated Principal Components

[Marinetti 2004]
[Dumoulin 2010]
[Douguet 2018]
[Mouhoubi 2016]
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3.2.2.2 Focus on SVD

One of the most interesting method for building application is the Singular-Value
Decomposition method. Indeed, SVD allows the extraction of the spatial and temporal
information from a thermographic sequence in a compact and simplified manner. The SVD of
an mxn pixels matrix X is a linear algebraic factorization which can be calculated as follows
[Rajic 2002]:

X=UxS xVt (18)

where U is an mxn orthogonal matrix, S is a nxn diagonal matrix (with the singular values of
X in the diagonal, sorted in descending order) and V'is the transpose of an nxn orthogonal
matrix:

X U S vt
X ee X u eee u S 0 oee v P Vi
UL ) e
Xm1 " Xmn Un1 = Umn : Snn/ \Vn1 " Vnn

The thermographic sequence must be rearranged so that the columns of matrix X
correspond to the thermograms at each time (see Figure 3.9):

After applying the SVD on matrix X, the columns of U represent a set of orthogonal statistical
modes known as Empirical Orthogonal Functions (EOF), which describe spatial variations of
data. On the other hand, the Principal Components (PC), which represent time variations,
are arranged row-wise in matrix V .. The first EOF will represent the most characteristic
variability of the data, the second EOF (denoted further as EOF n°2) will contain the second
most important variability, and so on. Usually, original data can be adequately represented
with only a few EOFs.
X=USV'

————— 1 i

1z ” In

. . Yozl 7 P
n images . —

2 L

2™ image 1

1% image atimage

Figure 3.9: Rearrangement of the thermographic sequence before application of the SVD
treatment [Douguet 2018]

This method was for instance applied recently to the detection of integrated thermal bridges
inside building walls as presented in Figure 3.10 [Douguet 2018]. The other advantage of
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SVD is that it can reduce noise from original sequence by removing high orders of singular
vectors. Superior orders contain less important information, so if some vectors belong to high
enough orders, they can be considered as noise. A reconstruction of the thermographic
sequence (inverse SVD) from the truncated SVD matrices leads to a filtered sequence.
Moreover, the increase of signal to noise ratio induced by an SVD processing allows then to
use classical image segmentation methods (such as gradient for instance) to extract edges
of thermal irregularities and to use micro-bolometers arrays IR cameras instead of cameras
with cooled detectors.

EOF n*1 EOF n*2

Wall with
integrated
thermal bridges

EOF n*3 Principal Components (PC)

Figure 3.10: Example of SVD analysis of a thermalvimages sequence allowing the detection
of integrated thermal bridges [Douguet 2018].

4. Tutorial first part : Determination of surface temperature and its associated
uncertainty using an IR camera

As mentioned in the introduction of this article, the first part of this training session will be
devoted to the determination of the temperature of a surface using an IR camera. We will
particularly discuss about the importance of the surface temperature correction by
considering measurements on surfaces of variable emissivity, and by evaluating the
associated uncertainty.
4.1 Description of the test bench
41.1 Structure and operating conditions

The structure of the test bench used in the first part of this tutorial is presented in Figure 4.1.
An image of this test bench with the measurement devices is also presented in Figure 4.2.
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The test bench is composed of a metallic plate covered with four coating of different
emissivity. This front surface will be observed with an IR camera.

A heating film will allow heating the surface of the test bench to a given temperature. A heat
flow meter was placed between the heating film and the metallic plate. A T-type
thermocouple is inserted inside this HFM. This allows obtaining the heat flux through the
front surface metallic plate and its temperature. In fact, the temperature of the front surface
will be different than the one measured by the thermocouple because of the thermal
resistance of the metallic plate and the presence of thermal contact resistances between
each element. Conducting thermal grease is applied between each element in order to
reduce thermal contact resistances.

Test Bench N°1

IR Camera

|

; ROIs /

Coating(s)

Insulating
material

Heating film

Lateral Insulation Metallic plate

HFM + TC
Front view
cross-sectional view
Figure 4.1: Schematic view of the test bench N°1
4.1.2 Emissivity of materials used in the test-bench of this tutorial

The normal spectral emissivity of each coating covering the front face of the test bench was
measured using an IR spectrometer equipped with an integrating sphere. This measurement
method was briefly presented in section 0 and Figure 2.12. Spectral emissivity curves
obtained are presented in Figure 4.3. Measurements were performed in laboratory at room
temperature (23 £ 2 °C). We will consider in this tutorial that the spectral emissivity is not
depending on the temperature. This assumption is acceptable since the surface temperature
will remain close to room temperature during the measurements.

The four coatings considered are:
- ablack paint (Ref RAL 9005);
- awhite paint (Ref RAL 9016);
- acopper finish paint;
- achrome finish paint.
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It can be seen from Figure 4.3, that spectral emissivity if black and white coatings in the IR
domain are quite high and close one the other despite their color difference in the visible
domain. The presence of metallic particles in chrome and copper coatings, tends to decrease
their emissivity.

Black coating (RAL 9005)

’ Voltmeter for HFM
| measurements

Voltmeter for heating
1 voltage measurement

Copper paint
finish

Chrome
paint finish

White paint
(RAL 9016)

2 4 6 8 10 12 14 16 18 20
A (um)

Figure 4.3: Normal spectral emissivity of the four coatings used in the test bench N°1
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Variations of the spectral emissivity as a function of the wavelength are noted, particularly for
the white paint. However, most important variations observed remain outside of the
sensitivity domain of the IR cameras used in this tutorial, i.e. LWIR cameras.

4.2 Temperature correction
4.2.1 Recall of the method used

In the L4 lecture, it was shown that the intensity measured by the IR camera is the sum of
three contributions:
- the self-emission of the target surface;
- the reflection on the target surface coming from the environment;
- the self-emission of the atmosphere between the camera lens and the target
surface.

This general principle is illustrated in Figure 4.4. This leads to the general equation of the
measured intensity Lmes:

Limes = Tatm-&-L°(Tg) + Taem- (1 —€).L°(Teny) + (1 — Taem). L% (Taem) (20)

As measurements are here done in an indoor environment and at a short distance, we will
consider that the transmittance of the atmosphere zm is equal to unity and consequently that
its contribution to the measured intensity is negligible. Thus, we obtain the simplified
equation:

Lines = €.L°(Ts) + (1 — &). L°(Teny) (21)

Hence, in such conditions, to obtain the surface temperature Ts, we have to know the surface
emissivity € and the mean-radiant temperature of the environment Ten. At this stage, it has to
be recalled that the measured intensity can be directly converted into an apparent
temperature Tapp by using the camera calibration curve.

Observed

thermal scene A
tm?sphere

Missjopn

Thermal Image

Figure 4.4: Principle of an IR thermography measurement
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4.2.2 Determination of the surface emissivities to consider

The first step of the temperature correction to perform is the computation of an apparent
emissivity of the considered surface. For this operation, we have to consider the spectral
emissivity curves presented in Figure 4.3. To obtain the apparent emissivity of the surface,
we have to integrate this curve in the sensitivity domain of the camera by weighting it by the
Plank’s curve response. For that purpose, the surface temperature is required! In the
framework of this tutorial, we have a first evaluation of the surface temperature using the
thermocouple inserted in the HFM. If there is no prior knowledge of the surface temperature,
it is possible to consider in a first step, a “flat” blackbody response, and then to iteratively
refine the emissivity correction.

—40.1

Copper
M@x =3223
Moy = 31.20
Min = 30.47

Max = 3314
Vioy = 31 55
Min = 30.30
i

~26.0

Figure 4.5: Example of Raw thermal image obtained on the front surface of test-bench N°1
(apparent temperature data in °C)

4.2.3 Determination of apparent temperature
Work to be done is the following:

- Check that the emissivity value is fixed to unity in the camera software. In that
case, thermal images are presented in apparent temperature.

- Record a thermal image of the surface and note the temperature given by the
thermocouple inserted in HFM (see example in Figure 4.5).

- Open the recorded image and identify the different ROIs to consider.

- For each ROI, compute a mean apparent temperature and a standard
deviation in each ROI area.

Tutorial 4: Infrared thermography: materials & buildings — page 32

84/339



METTI 8 Advanced School Ile d’Oléron, France

Thermal Measurements and Inverse Techniques Sept. 24t — Sept 29%, 2023
01 T T F T 1 T % T T
Fof N S %

L / QR % .

0.09 /g‘ i o - g

o F P ‘3
0.08F f/ N i
o 4 = %
, Q@ o v, \Y
007+ / R & SN N
£ L
0.06 - / :,'1' \\\ -
s .
Eoospd S > g = v e
W . = {v’,./ - o ~
6/ @ P
0.04- > & <5
: N %
0.03 £ .
A 1
0.02- .
05 o % 05
0.01 o> o, 0z .
0 ‘0,]_-\ r r In r r r r Ol
-40 -30 -20 -10 0 10 20 30 40
Tapp-Tmir )

Figure 4.6: Error made (expressed in °C) on the evaluation of the mean-radiant temperature
as a function of mirror emissivity and difference between apparent and mirror temperatures.

4.2.4 Determination of mean radiant temperature

For the evaluation of the mean radiant temperature, we will use the method proposed in the
[ASTM E1862-97] standard and briefly described in section 2.3.2. For that purpose, place the
diffusive mirror in front of the test bench surface and take one thermal image of it. Compute
the mean apparent temperature on the mirror surface and the associated standard deviation.
If the mirror emissivity is approximated to be near 0 (perfect reflector), then the mean
apparent temperature obtained on its surface is equal to the mean radiant temperature Teny.

In the case where the mirror emissivity cannot be considered equal to 0, it is necessary to
know its temperature and its emissivity, respectively Tmir and &mir. Its temperature can be for
instance measured with a contact sensor (thermocouple or resistive sensor) and its
emissivity have to be characterized with an additional device (by spectrometry for instance).
In such a case, we obtain on the mirror surface, the following relationship (atmosphere
influence is again neglected) [Datcu 2005]:

Lo (Tenv) — Linir— &mir-L° (Tmir) (22)

1- &mir

where L is the intensity measured with the IR camera on the mirror surface. The error on
the evaluation of the mean-radiant temperature is plotted in Figure 4.6 for mirror emissivity
lower than 0.1 and a difference between apparent and mirror temperatures ranging between
-40 and 40°C.

4.2.5 Performing the temperature correction

Once surface emissivity, surface apparent temperature (or surface intensity) and mean
radiant temperature are known, it is possible to perform the temperature correction for each
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coating, according to equation 21. An example of temperature correction is presented in
Table 6. Raw thermal image considered is the one presented in Figure 4.5. We considered a
mean-radiant temperature value Teny = 28°C and coatings emissivities plotted in Figure 4.3.

After correction, we observed that temperatures on three first coatings (Black, white and
copper paint) are close. Due to their high emissivity and a relative small difference (about
10°C) between the mean-radiant temperature and the apparent temperature, the
temperature correction on black and white coatings is small (less than 1°C). Due to its lower
emissivity, the temperature correction on the copper paint is more important (about 8°C).

The Thermocouple inserted in the HFM was indicating a temperature of 41°C during the
experiment. It is thus expected to obtain a surface temperature slightly lower than this value.
However, to conclude on the accuracy of this correction, it is required to compute uncertainty
on the corrected surface temperature.

Finally, we can notice that the temperature correction on the chrome paint coating gives a
value 8°C higher than the one of the thermocouple. As shown in Figure 4.3, this coating is
the most reflective of the four used in this experiment. For such low emissivity surfaces, the
correction is strongly dependent on the mean-radiant temperature and emissivity value used.
For instance, in the present case, the use of mean-radiant temperature of 30°C instead of
28°C leads to a corrected surface temperature of 39.6°C, thus close to the expected one.
Moreover, apparent temperature obtained in highly reflective surfaces can also be influenced
by non-uniformities of the radiative surrounding environment: we can observe such apparent
temperature variations on the chrome coating surface in Figure 4.5.

Table 6: Example of comparison of apparent and corrected surface temperatures obtained

on the four coatings of test bench N°1 using IR image of Figure 4.5.
Coating Black paint White paint Copper paint Chrome paint
Tapp (°C) 38.2 38.2 31.2 31.5
Ts (°C) 38.7 38.8 39.3 49.1

4.2.6 Uncertainty analysis

As the surface temperature Ts is not directly evaluated by a measurement device, but
computed from other quantities, its uncertainty u(Ts) has to be computed by considering
standard uncertainties on each parameter of equation (21), namely ¢, Tenv and Ts. If we
consider that these parameters are not correlated, the combined standard uncertainty on Ts ,
namely uc(Ts) is given by [GUM 1995]:

w215 = (22) %@ + (22) %t o) + (52) %02 (Tupy) (23)

0Teny 0 app

Then, the expanded uncertainty U(Ts) is obtained by multiplying the combined standard
uncertainty by a coverage factor k:

U(Ts) =k Xuc(Ts) (24)

The value of the coverage factor determines the level of confidence on the measured or
computed quantity. For many practical measurements, particularly if the objective quantity
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can be described by a normal distribution, it can be assumed that a value of k = 2 defines an
interval having a level of confidence of approximately 95% (or 99% for k = 3). The validity of
this assumption has to be checked by referring to Annex G of the [GUM 1995] reference.

4.2.7 Analysis of results

After evaluation of uncertainties, it is now possible to express the surface temperature result
for each coating:

Iy = T; + U(Ts) (25)

where T; is the estimated value of the surface temperature. Surface temperatures evaluated
by IR thermography can be compared to the temperature value given by the contact sensor
inserted in the test bench. This evaluation can now be also repeated by “disturbing” the
thermal scene; this can be done by placing a hot object in the environment, whose emission
will be seen by reflection of the surface of the test-bench.

5. Tutorial Second part: Detection and characterization of thermal bridges
inside a building wall

As mentioned in the introduction of this article, the second part of this training session will be
devoted to the detection and characterization of thermal bridges inside a building wall. We
will investigate the case of integrated thermal bridges by using two different materials
simulating the presence of a wood stud or of a metallic rail. To reduce the measurement
duration, the experiments will be done using a reduced-scale wall.

Test Bench N°2

Inclusions

Inclusions
Config 2
IR Camera IR Camera
g { >
Config 1 /

PVCboard

XPS: Extruded Polystyrene
Heating film MDF: Medium Density Fiberboard
OSB: Oriented Strand Board

PVC board

Figure 5.1: Schematic view of the test bench N°2 and of the two measurement
configurations

Tutorial 4: Infrared thermography: materials & buildings — page 35

87/339



METTI 8 Advanced School Ile d’Oléron, France
Thermal Measurements and Inverse Techniques Sept. 24™ — Sept 29, 2023

5.1 Description of the test bench

511 Structure and operating conditions

The structure of the test bench used in this second part of the training is presented in 5.1.
The front face, observed using an IR camera, will be constituted by a PVC foam plate. The
dimensions of this plate are 60 cm x 60 cm.

Behind this first layer, an insulating material (XPS) was placed. Inclusions can be placed
inside this layer to simulate the presence of an integrated thermal bridge. These inclusions
are either a pine wood rod or a hollow aluminum tube (inclusions have a square section).
Both inclusions can also be used simultaneously can be placed vertically or horizontally in
the insulating layer. As pine wood and aluminum have a higher thermal conductivity than
XPS, heat flow through the wall will be enhanced. Different possible experimental
configurations are presented in Figure 5.2.

Config 1-A: Config 2-A: Vertical metallic

Interior view Vertical metallic inclusion and horizontal wood inclusions

Heating m
film

MDF

Front side view ) Config 173-' ) Config 2-B: Vertical wood and
Vertical wood inclusion horizontal metallic inclusions

Figure 5.2: Images of the test bench N°2 with different configurations; wood inclusions are
pine wood rods; metallic inclusions are aluminum hollow tubes; all inclusions have a square
section of 20 mm x 20 mm

A heating film was placed behind the insulating layer, to artificially create a constant and
homogeneous heat flux inside the insulating layer. This case study corresponds to the
configuration N°1 described in Figure 5.1. Finally, another XPS layer is placed behind the
heating film and finally an OSB plate is used to ensure the mechanical structure of the wall.
In the configuration N°2 presented in Figure 5.1, we will not use the heating film, but we will
heat the wall surface either with lamps or heating fans. The edges of the test bench are not
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insulated. MDF studs are used to maintain all elements in an adequate position during the

experiments. Several T-type thermocouples are also inserted between each layer of the wall.
5.1.2 Thermophysical properties of materials used in the test-bench

Physical properties of the materials used in the test bench N°2 are reported in Table 7.

These materials were characterized using the Hot-Disk method. This method allows

obtaining the thermal conductivity k and the thermal diffusivity a (or the p.C, product).

Materials density p was estimated by weighting a known volume of each material. From
these values, it is possible to compute the thermal resistance of each layer.

Thermal resistance of the entire wall and of the front part of the wall, i.e. between the heating
film and the front surface, are reported in Table 8, along with the corresponding U thermal
transmission coefficient values (refer to section 3.1.1 for computation details). These values
are given without any thermal bridge included inside the first insulating layer.

Table 7: Thermophysical properties of materials used in the test bench N°2

Material e k R a pCp P

(mm) | (MW.m2.K?) (x10°% (mm2.s?) (MI.m3K?Y | (kg.m?)
m2.K.W?)
PVC board 5 69+ 2 72+3 0.165+0.005 | 0.423+0.18 | 443+ 10
XPS 20 3B+l 571 +£17 0.79+£0.12 0.044 + 32+1
0.006

Pine wood 20 202 £19 999 0.259+0.026 | 0.78+0.11 6336

Aluminum 20 (38+3) x 0.46 £ 0.03 - 0.685 + 761 £ 6

hollow tube 102 (*) 0.035 (**)

OSB 15 184 + 16 82+7 0.234+0.060 | 0.79+0.13 63517

(*) Effective thermal conductivity and thermal resistance of the Aluminum hollow tube was computed from
measured value for the Aluminum (214 + 5 W.m.K-%) and by considering a simplified heat transfer model taking
into account the presence of air inside the tube volume and its geometry.

(**) p Cp value of the Aluminum hollow tube was computed from measured density and conventional Cp value for
Aluminum (905 J.kg1.K! [Sacadura 2015]).

Table 8: Thermal resistance and thermal transmission of the wall of the test bench N°2

Configuration R (m2.K.W1) U (W.m?2K%
Entire wall 0.64 13
Front part of the wall (from heating film and front surface) 1.3 0.70

5.2 Measurement in static regime

Measurements in static regime are performed using the heating film included in the test
bench. An example of thermal image obtained (plotted in apparent temperature) is presented
in Figure 5.3, for the configuration 2-A. In that configuration the vertical thermal bridge
(metallic tube) and the horizontal thermal bridge (pine wood rod) can be seen in the thermal
image. As expected, apparent temperature on the metallic thermal bridge is higher than on
the wood thermal bridge, due to the lower its lower thermal resistance.

Once static regime is reached, work to be done is the following:
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- Record one of several thermal images of the front surface of the wall; if

several images are acquired, only an average image is required for further
computations.

- Compute the Iy value for each thermal bridge (refer to sections 3.1.2.2 and
3.2.1.3 for details) and the corresponding i value. These computations can
be done using either absolute temperature or apparent temperature.

~37.0

Figure 5.3: Example of raw thermal image plotted in apparent temperature obtained in static
regime for the configuration2-A presented in Figure 5.2

0 mi

——

s A
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120 min

Figure 5.4: Example of raw thermal images plotted in apparent temperature obtained in
dynamic regime for the configuration2-A, after increasing experiment durations
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5.3 Measurement in dynamic regime

531 Using the heating film included in the test-bench

To illustrate the possible visualization of thermal bridges in dynamic regime, we will first start
using the heating film included in the wall. In this experiment, the film is heated with a
constant power during one hour. Then, the heating is stopped (relaxation phase). Several
images are acquired during a total duration of 2 hours.

In Figure 5.4, we have reported six thermal images recorded at different heating and
relaxation durations. These images are plotted using apparent temperature and using the
same colormap and thermal range than in Figure 5.3 (from 28.0 to 37.0°C). Again, these
images were recorded using the configuration 2-A of the test bench. In each image, lines
indicate the position of linear temperature profiles across both thermal bridges plotted in
Figure 5.5 for the same experiment durations.

37
36 —15mr:"|nin A

Wood 30 min / \ Metal
—60 min

—90 min

34 —120 min / \
33

32

35

Tapp (oc)

31

30

29

28

Pixels

Figure 5.5: Example of apparent temperature variations on the surface; left part: vertical
profile corresponding to the wood rod; right part: horizontal profile corresponding to the metal
tube

Just before heating, thermal bridges are not visible, because the wall is in thermal equilibrium
with a stable ambiance, so its temperature is uniform. The vertical metallic thermal bridge
appears first due its lower thermal inertia. Moreover, its lower thermal resistance allows
observing rapidly a temperature contrast much greater than the NETD of the IR camera.
Then, the second thermal bridge (horizontal pine wood rod) appears, due its higher thermal
inertia, and with a much lower thermal contrast magnitude. After one hour of heating, a
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quasi-stable regime is reached and we observe a temperature contrast three times higher for
the metallic thermal bridge (about 4.5K versus 1.5K).
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Figure 5.6: Example of EOFs (top figure) and PCs (bottom figure) obtained after SVD
analysis (amplitude of PC 1 was divided by 1000)
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During the subsequent relaxation phase, we observe a rapid decrease of thermal contrast for
the metallic thermal bridge, again due to its lower thermal inertia. After that, thermal
signatures of both thermal bridges decrease slowly and remain almost identical one to the
other. At this stage, the thermal inertia of the whole structure predominates.

In this experiment, as the heating source is placed behind the insulating layer including
thermal bridges, we are very sensitive to the transmission coefficient of the thermal bridge
and also its thermal inertia.

5.3.2 Using an external thermal excitation

Another way to detect thermal bridges inside a wall is to use an external thermal excitation
that can be for instance heating lamps or fans. The experimental conditions remain identical
as the ones described in the preceding section. At a given time, the heating source is
switched on and thermal images of the wall surface are acquired at a given sampling
frequency.

As mentioned before in section 3.2.2, it is possible to use one of the analysis techniques
commonly used in NDT to identify the presence of thermal bridges. For instance the SVD
analysis (principle was detailed in section 3.2.2.2) was applied to a sequence of thermal
images corresponding to configuration 2-A. The result is presented in Figure 5.6. As
observed, the first three Orthogonal Empirical Functions contain the main interesting
information of the thermal images sequence. This is confirmed by the associated singular
values and Principal Components whose amplitude is lower and lower. EOF N°1 can
generally be assimilated to a mean thermal image that would be computed from the whole
image sequence. In this experiment, we can see that the contributions of vertical and
horizontal thermal bridges are seen separately in EOFs N°2 and 3 respectively.

Moreover, with this technique, it is possible:
- to store only the first EOFs and principal components (data compression);
- to rebuild thermal images sequence using the first EOFs (filtering).

6. Conclusion

In the first part of this tutorial, we have illustrated a methodology to estimate the temperature
of a surface from the intensity map (or apparent temperature map) obtained using an IR
camera. It was shown that this evaluation is sensitive to several parameters, particularly
surface emissivity and mean-radiant temperature. For surfaces with high emissivity and for
small differences between surface temperature and mean-radiant temperature, a surface
temperature can be estimated accurately. However, for low-emissivity surfaces, the result is
strongly dependent on the knowledge of the mean-radiant temperature and thus estimation
of a surface temperature becomes difficult. In the second part of this tutorial, we have seen
that IR thermography is an interesting tool for the characterization of a building wall thermal
insulation. At this time, quantitative data such thermal transmittance coefficient of a wall or of
thermal bridges can be estimated in static conditions. Active thermography is interesting to
detect the presence of thermal irregularities whatever weather conditions. It was shown that
the use of NDT analysis techniques allows increasing the SNR ratio and make possible to
use micro-bolometers cameras for such inspections.
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Abstract — Periodic heating methods for materials thermal characterization are
commonly used when observable signal/noise ratio or sample thermo stability are low.
This workshop is intended to illustrate the ways of analysing the sample thermal
behaviour in order to estimate thermal properties. The experimental apparatus is
based on cheap heating device and temperature measurement system so as to make
it adaptable for educational purpose. The thermal modelling is based on complex
temperature approach (amplitude and phase lag of temperature evolution). The
parameter estimation procedure is developed (sensitivity analysis, errors sources
analysis with a particular attention on noise effects, optimal conception of experiment
...). Two estimation strategies (complex temperature space distribution or frequency
evolution) are described, illustrated and compared. Additional information on derived
methods usable on problems with increased geometrical complexity with both
analytical and finite elements modelling is detailed.

Nomenclature

D R Q=

1.

space variable , m
metallic sample height, m

diffusivity, m’.s~
diffusion length, m
mass density, kg.m™
conductivity, W.m™'.K™

time variable, s
frequency, Hz

1 1

period, s~
heating flux, W.m™
specific heat, J.kg™' K™

SO0 g ="

phase lag rad or °

Introduction

Dynamic methods of measuring solid materials thermal properties are based on the

observation of the samples behaviour when submitted to a thermal excitation of known
characteristics. These dynamic methods are usually classified according to the type of
thermal excitation, the more usual being the step function, the Dirac pulse, the sine-wave
modulation and more recently the pseudo-random sequences. Each of these methods
categories includes advantages and inconveniences that make that either can be more
applicable in a given configuration. We will only develop here the methods based on a
periodic excitation, the other categories being illustrated in other workshops of this school.
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Introduction of periodic methods for determining the thermal parameters of homogeneous
solid materials is due to Angstrom (1863) [1]. The sample is a long thin rod (length >>
diameter) of which an extremity is submitted to a temperature sinusoidal modulation. The
thermal parameters are deducted from the evolution of temperature oscillations attenuation
and phase lag along the bar. Nearly one century later, Cowan (1961) [2] extended this type
of method to the case of disk-shaped samples (diameter >> thickness) submitted to a
sinusoidal modulation of flux on one face. Since, the principle has been applied to the
characterization of multi-layered materials (coating, gluing), orthotropic materials (long fibre,
woven composites) this from macroscopic scale to microscopic scale [3] and to detect default
in composites’ materials [4].

2. Concepts for periodic heating method

We are now going to introduce specific tools for the use of this kind of periodic methods.
The complex temperatures method will be used for ease modelling of the heat transfer within
the sample. The lock-in detection will allow extracting the attenuation and phase lag of
temperature oscillations from a sensor output.

2.1 Complex Temperatures

When a solid media submitted to a sinusoidal excitation reached a steady-state, if the

heat transfer equations are linear (temperature independent parameters), the temperature in

all point is the sum of a steady component and a sinusoidal component of same period that
excitation.

T(r,t) =T (r) +T, (r,t) with T, (r) = A(r)cos(at +¢(r))

where A(r) represents the amplitude and @(r) the phase lag with respect to the excitation, of
temperature oscillations at location (r) (Figure 1). The sinusoidal component can be written
as:

T (r) = Re(A(r) exp(j¢ (r))exp(jat)) = Re(f (r)exp(jat))
One will call complex temperature the variable 7 (r) = A(r) exp(j¢ (r)) that contains the

information on amplitude and phase of the temperature oscillations. It results from the same
equations that T(r,t) adapted to the sinusoidal steady state.
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Figure 1: Phase lag and modulus definition
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The resolution of the problem is brought back to the one of a stationary problem involving
stationary limit conditions as well. One will find some examples illustrating the complex
temperatures methods in [5].

2.2 Lock-in detection

In a general manner, the periodic methods present some advantages when the
signal/noise ratio on observable output is low. This is linked to the processing of the signal
coming from the sensor that allows extracting the amplitude and phase of it, even when the
noise level is high. The implemented technique is the lock-in detection that will be achieved
by a device or software.

2.2.1 Lock-in Amplifier (LIA) [6]
A LIA is a device capable, from any electric input signal and a periodic reference, to select
the sinusoidal component of same period that the reference contained in the input signal,
and to calculate both module and phase of this component. In addition to this basic function,

the LIA significantly decreases the signal band pass and therefore the measurement noise
band pass. Its functioning is achieved by several stages that are described in Figure 2.
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Figure 2: Functioning principle of a lock-in amplifier
2.2.1.1 input signal
This input will be the electric signal coming from the sensor: its temporal evolution is
unknown but it contains a sinusoidal component of same frequency that the reference signal.
This signal can contain a continuous infinity of other frequencies or a discrete series of
frequencies.
2.2.1.2 reference signal
This signal is a periodic voltage used as a reference: it represents the temporal evolutions
of excitation (mechanical chopper, acousto-optic modulator...). The LIA will extract the
sinusoidal component of same frequency that the signal of reference. The fundamental
harmonic of this signal allows defining an origin for the phase lag.
2.2.1.3 input stage
This stage is a stage for filtering and formatting the input signal. The operator who decides
the nature of the filters used adjusts input analogical filters and amplification gains, acting
here as device calibre selection.
2.2.1.4 reference stage
This stage synthesizes two sinusoidal signals of same frequency that the reference, one
being in phase with its fundamental harmonic and the second being out of phase of 90
degrees. These signals are R(t) and Rgo(t) defined by R(t)=cos(27t) and Roo(t)=sin(27t).
2.2.1.5 demodulator
This stage makes the synchronous demodulation by achieving the multiplication of the
input signal by R(t) and Rso(t) and provides two signals, X(t) and Y(t) defined by X{(t)=Se(t)R(t)
and Y(t)=Se(t)Rao(t).

To illustrate the functioning of the LIA, let us consider an input signal composed of a sine
wave of same frequency that the reference (f,) and a disturbing second one of frequency f..
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S,(t) = A cosQnf,t+¢,) + A, cos27f,t + ¢p)
Let us write X(t) and Y(t) for Se(t).

X(t)=S,(t)cos(27f,. 1) = (A, cosrf, t+¢,)+ Ap cos(27fpt + ¢p ))cos(27F, t)
= A, cos(27f, t+ @, )cos(27F, 1) + A, cos27f pt + ¢p)cos(27fr 1)

A A Ap Ap
= TrCOS(¢r) +7rCOS(47frt +¢r) +7COS(277(fp +fr)t +¢p) +7COS(27T(fp _fr)t +¢p)

Y(t)=S,(t)sin(27f, t) = (A, cos27f, t + ¢,.) + A, cos27f 1 + ¢p ) sin(27F, t)

= A, cos(27f, t + @, )sin(27f 1) + A, sin(27f 1 + @) cOS(27F . 1)
_ A +i'4 + +ﬁ'2 + + —2'2 - +
== Sin(g,) + ST, 1+ §) + SN+ f01+6y) = -SRI < )1+ 6))

Both signals, X(t) and Y(t), are the sum of a steady-state component containing the
information on modulus and phase, and of periodic components at disturbing frequencies
2f,, fo-frand fo+f.

2.2.1.6 output filter

This stage is constituted of a programmable low pass filter applied to X(t) and Y(t) in order
to eliminate the disturbing periodic components and to select the steady-state component
only. Proximity between the disturbing frequency f, and f, determines the band pass to be
used for the low pass filter. Therefore, the LIA takes into account for the output only the part
of the input signal belonging to the frequency domain centered on f. and of same width that
the output filter band pass. One finally gets two quantities M = A/2cos(¢;) and
N =-A/2sin(¢;) that allows modulus and phase calculation according to:

A =M’ +N*and ¢, = —mn*‘(%)

To recapitulate, the LIA functioning comprises two steps:

- the input signal of whatever shape is multiplied by a sinusoidal signal at the reference
frequency. The spectrum of the resulting signal is that of the input signal shifted by the
quantity - frand +f,

- a low pass filter is then applied to this signal. The output signal is slowly variable and
centred on M/2cos(¢) if the component at f; of the entry signal M cos(277f, xt + ¢) .

The LIA extracts, from a signal of whatever shape, the sinusoidal component at a reference
frequency.

2.2.2 Lock-in algorithm
In some cases, it can be impossible to incorporate a LIA in the measurement chain. It is

the case, for example, when one wants to get a complex temperature mapping (module
and
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phase) from a thermography recording. For every pixel (i,j) of the picture, the aim is to
calculate its phase and amplitude from the recorded thermogram. It is possible to simulate by

software the functioning of a LIA. Considering a sequence of 512 temperature values noted
T(nat), n[H0,.. ,511} where dt is the sampling time, the algorithm is the following one:

1. Calculation of X(ndt) n£40,..,511} and Y(ndt) n[40,..,511} according to
X (n)=T(ndt)cos(2rr f, ndt) and Y (n) =T (ndt)sin(277 f, ndt)
where f is the heating frequency (reference)

2. Calculation of Mand N according to

511 511

1 1
M=——» X(k)yet N=——)> Y(k
512; &) 512; &)

These formulas are valid if the record covers an integer number of heating periods.

Calculation of temperature modulus and phase according to
2 2 -1 N
M=NvM"+N" et ¢=—tan (—)
M
This educational workshop is based on a cheap heating device in order to illustrate periodic
methods for thermal diffusivity characterization.
3. Periodic method for thermal diffusivity identification
3.1. Aims
In this paragraph, periodic method principle is presented. Heat transfers in a thin metallic
sample exposed to a periodic excitation are considered. Analytical solution is developed and
numerical results have to be compared to experimental results obtained for reference
materials. Early knowledge is thermal system science and numerical analysis.

3.2. Mathematical modelling

Let us consider a thin plane metallic sample. Diffusion length is defined by

U= ‘/2_0 = if and for sample height e such as e <« i, temperature gradients can be
w \j Vi

(1) if x<O
0 if x=20
moving mask leads to the control of origin position 0(x=0). Heat transfers are 1D (see
Figure 3).

neglected in the sample thickness. Periodic excitation is Q(x,t) :{Q and a
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Figure 3: Studied configuration and some experimental results

Temperature distributions from the initial temperature (assumed to be equal to ambient
temperature) are described by the following equation:

GT(x,t) _ 02T(x,t)_
— +hT (x,t) ke— 5= =0Q(x,1) (1)

pPCe
Let us consider the quite general following formulation for the periodic heating flux
Qe if x<0 _ o .
0(xt)= ‘ , then complex temperature is: T (x,¢) =T (x,¢)e™ where ¢ is
0 if x=20
the temperature phase lag relating to the input excitation. Then previous equation reads as
follows:

japCeT(x,¢)+hT(x,¢)_keM:{Q if x<0 2

ox’ 0 if x=20

Introducing ¢, = jajoCe + h , several situations are encountered:

2
= for x>0: clT(x,¢)—keM:0. Solution is T (x,¢) =K, exp(i\/li:xj. Since
X e

temperature evolution is finite (‘T(w,¢)‘ =0)then T(x,¢) =K, exp(—\/;:x)
e

= for x<0: clT(x,¢)—keM—Q. Solution is T(x,¢):Kzexp(i\/;:x]+g.
e

ox* G
G

s (1) <) e 7(56) = K, cp 111+,
e
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= for x=0, temperature continuity (Kl =K, +2j and temperature gradient continuity
G
(=K, =K,) leads to: K, -2 o K, -2
2¢, 2¢,

Thus solution of equation (2) is:
o 2¢ \ ke
o /cl .
—ex, —X if x=20
2c¢, p( ke f

pCe

T(x¢)=

A thermal system time characteristic is 7 = , then:

T(x,¢): 0 ] exp(— %)(j+$jx] if x=0
2apCe(j+wTj

1 1 . ¢ .
andfor z=—+j ; |z =—+1+w'r* and Jz= WL 4 j WL one obtains:
wr wr 2 2

T(x,¢)'2a£((jle fir] { (\/|Z|+_+J\/|Z| D if x20

Thus, the following formulation is proposed (9 = Arg(1- wrj)) :

/ 1 , 1 .
T(x,¢):2af)c€exp(—% |Z|+E]exp(—](% |z|—E—9D if x20

For wr <<1, |z| =1 and temperature modulus for x>0 is:

‘T(x,¢)‘ = exp(—%j if x20 (3)

2a)pCe
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Moreover for wr <<1, then 8= —%T and for x=0:

Arg(T(x,¢))=¢=— —%T if x20 (4)

X =

3.3. Analysis

In the previous paragraph, it has been shown that temperature modulus and phase lag
induced by a periodic excitation depend on thermal diffusivity of the studied material. Then
two approaches are proposed (Figure 4).

Spatial scanning

(modulus and phase lag)

Heat flux z
Frequency f
Frequency scanning
- (one position)
[modulus and phase lag)

X

Heat flux 0 z
Different frequencies y

Figure 4: 2 configurations

3.3.1. Spatial scanning

* Measurements of temperature modulus at point x for several mask positions are
performed and equation (3) is written as:

srnl)s

Drawing log‘T(x,¢)‘ versus x, gives a straight line and coefficient is equal to

nf

1
—-— =—,|—— (see Figure 5 for an illustration).
M a
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Spatial scanning (frequency : 0.1 Hz)

= |
S 1~ A =g — 4+ — = — — — copper
Ke] ! ! ! ! ! Il —— aluminium
05 — - s b steel
| | | | | t | T T
| | | | | | | | |
e e e e A B
| | | | | | | t |
05 — == — —l— =4 ——+ - —+——F - —l-— - >4 - — 1
| | | | | | |

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0016 0018 0.02
square root (x)

Figure 5: Temperature modulus for spatial scanning

» Measurements of temperature phase lag at point x for several mask position are

. . . . 1 T .
performed. Equation (4) leads to a straight line; coefficient is — =— L (see Figure
7] a
6 for an illustration).
Spatial scanning (frequency : 0.1 Hz)
oo s --r--r-

I S

3 | | | | | | || —_ copper

g P00 — —— — —— — A — =t — =+ — S —— 4 T aluminium

Q | | | | | | | steel

“o 0.002 0.004 0.006 0.008 XO(?;]) 0.012 0.014 0016 0018 0.02
Figure 6: Phase lag for spatial scanning
Results are obtained with the following data:
Table 1:
P C a 0 e h
kg.m™ Jkg K m’.s™ W™ m Wm?> K™
silver 10500 230 171 107 5 10° 10 10
copper 8940 380 114 10°
aluminiu 2700 860 86 107
m

steel 7850 490 12 107

Table 1: Parameters

According to the previous data, it is obvious to verify that for the studied materials,
r>23s . If f=20.1Hz then wr >14 and it is verified that wr >1 and solutions given in
equations (3) and (4) are assumed to be correct.
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3.3.2 Frequency scanning

» Temperature modulus measurements at point x for a fixed mask position are
performed for a frequency scanning and equation (3) is written as:

log‘T(x,¢)‘ = log(4iZZQ7Ce)—logf —x\/? (6)

Drawing log(‘T(x,¢)‘)+logf versus \/f , gives a straight line, coefficient —x\/g

(see Figure 7 for an illustration).

Frequency scanning (position : x=0.01)

4

05 T T
| |
O === — - ek T -~ — R Bl
|
05 — — Sho — — = — o~ = - < = T ==
— | | |
LR R e m— —h — o m — — ke —
= | | | | | . .
Bas —— 4 —— =+ — =S — — 4 — — | — silver
£ | | | | | — copper
T ok - -4 k- >y __ __ |— auminium | _
o | | | | | steel
=
e e il o e i il e
3 | | | | | | |
Y O Y
| | | | | | |
a5 — — - — L L Lo
| | | | | | ]
I | | I | | |
1 2 3 4 5 6 7 8

0

square root (f)

Figure 7 : Temperature modulus for frequency scanning

= Phase lag measurements at a given distance to the mask lead for a frequency

scanning to a straight line while drawing ¢(\/7): Arg (T(x,¢)) =—x g\/_—g (see

Figure 8 for an illustration).

T T
| | |
| — silver

|

|

|

—— copper
—— aluminium

00 S - - -7 ————

square root (f)

Figure 8 : Phase lag for frequency scanning

3.4. Experimentations
Measurements obtained on thin metallic samples are presented in order to verify
theoretical results considered above. For well-known materials two experimentations are

proposed. Firstly, thermocouple is fixed to the sample and mask is moved for a spatial
scanning. Then temperature modulus and phase lag measurements are obtained and results
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are compared to Figures 5 and 6. Secondly, mask and thermocouple are fixed and a
frequency scanning is performed. Modulus and phase lag measurements obtained for
several excitation frequencies are compared with theoretical results presented in Figures 7
and 8.

4. Sensitivity analysis
4.1. Aims

In this paragraph, thermal system analysis is investigated and sensitivity analysis is
proposed in order to estimate the effect of mathematical model input uncertainties. In such a
way, it is essential to verify that temperature observations are efficient to identify material
diffusivity. Moreover, uncertainties of input parameters which are assumed to be known have
not to dramatically affect identification result. Then optimal design of experimental bench can
be studied.

4.2. Presentation

Sensitivity analysis is performed in order to estimate the effect of the variation of model
input parameter (p,) on a model output (s;). In order to ensure that observation

(ool

¢}) depends on diffusivity in the studied configuration, it is important to verify that

Os;, . . -~
0 is maximum. In such a way, due to uncertainties of well-known parameters, we have to
a

verify that % is minimum ((p, # ) or (p, % x)). Then, several situations are presented:
D;
= Spatial scanning

o|T
- Modulus measurement: it is important to verify that % is great and that (see
a

equation 5) 6|T| , 6|T| =6|T| =6|T| , M are minimum. Comparisons are
00 op 0C  Oe of

o]

api

proposed on the same figure while (pi j are drawing versus x.

0¢ 09

- Phase lag measurement: P has to be maximum and (O_J has to be minimum.
a

= Frequency scanning:

o|T o|T
- Modulus measurement: ﬂ has to be maximum and (see equation 6) M ,
oa 00
or| _o|r| _a|T]) (o] - .
= = , have to be minimum. Comparisons are proposed on
dp 0C  Oe Ox

o|Tr
the same figure while (pi %] are drawing versus f .
D;
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0¢ . 09 -
- Phase lag measurement: P has to be maximum and e has to be minimum.
a X

Sensitivity functions are derived from equations (3) and (4). Let us consider the following

notations A = 0 ; B= 2t ; E=exp|—x it
2apCe a a

scanning observation Sensitivity functions
o|T|
a_
oa
modulus oT| o|T|
Q_GQ and f_af
ofr| _ .ol _ olr|
o =C =e
0p ocC de

spatial

phase lag a% and f%
oa of
o|r|
a_
oa
modulus M 6|T| - 6|T| - 6|T|
frequency Q 00 and p 00 =C aC e
o|T|
ol il
Ox
phase lag 0¢ 0¢

a— and x—
oa Ox

Table 2: Sensitivity functions

Sensitivity functions for a steel sample are presented in Figures 9, 10, 11 and 12.

Spatial scanning (frequency : 0.1 Hz) . Spatial scanning (frequency : 0.1 Hz)

o

el
o @ -

. modulus sensitivity
phase lag sensitivity

=)
5

7150 0.002 0.004 0.006 0.008 0.01 0012 0014 0016 0018 0.02 720 0.002 0.004 0.006 0008 001 0012 0014 0016 0018 0.02

x (m) x (m)
Figure 9: Modulus sensitivity for spatial ~ Figure 10: Phase lag sensitivity for spatial
scanning scanning
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modulus sensitivity

Frequency scanning (position : x=0.01) Frequency scanning (position : x=0.01)

~

=)

phase lag sensitivity
O N

&

=%
o
o
o
w
o
=
o
2
o
Y
o
3
o

09 1

Figure 11: Modulus sensitivity for Figure 12: Phase lag sensitivity for
frequency scanning frequency scanning

Sensitivity functions for a steel sample are analysed as follows:

Figure 9: for temperature modulus observation during a spatial scanning, it is important
to not take into account measurements near to the mask or too far. An intermediate
distance has to be chosen. Sensitivity to frequency f is low enough but other input
parameters Q, p, C, e have too be carefully known.

Figure 10 and 12: for phase lag measurements for spatial or frequency scanning it is
crucial to well determine the mask position x.

Figure 11: for temperature modulus measured during a frequency scanning, it is better
to avoid low or high frequencies. Intermediate frequency range has to be investigated.
Sensitivity to position x is important but for the other parameters Q, p, C, e

sensitivity is low enough.

Thus in the studied configuration several remarks are proposed:

it is crucial to well determine the mask position in order to minimise the uncertainty on
input parameter x,

if the excitation frequency is not well known then diffusivity can be identified with
temperature modulus measurements during a spatial scanning in an intermediate
domain,

If at least one input parameter (Q, o, C, e) is not well known then a frequency

scanning in an intermediate frequency range can lead to good estimation of the
diffusivity.

Several fields of interests can be developed, such as the optimal design for the
experimental bench in order to optimise the signal / noise ratio.

5. Diffusivity identification

Once the thermal model has been established, the previous study of sensitivies gives the
optimal experimental conditions and allows estimating the error range on identified properties
according to measurement errors on experimental parameters. The sample being subjected
to a periodic heating (system input), an appropriate sensor is used to measure the modulus
and phase lag of the temperature field (system output) at a given location. A thermal transfer
model allows the calculation of theses output at any location knowing the heating input and
the thermal parameters controlling the system (diffusivity and Biot humber). These thermal
properties are identified by minimizing the measurement-calculation difference. Various
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criteria for this identification can be considered and according to the students’ knowledge,
several studies based on several cost function determination are proposed; for example [7]:

- Quadratic cost functions which are by far the most commonly used because of their
intuitive appeal. Such an estimator is usually called a weighted least square estimator,

- Weighted sum of absolute values of error (weighted least-modulus estimators) are used
while very large errors are encountered since penalization is less than for quadratic costs.

Estimator robustness can also be investigated in order to study if its performance does not
deteriorate too much when uncertainties are considered on the noise distribution.

6. Implementation of a finite element method
6.1. Aims
In this paragraph the interest of the implementation of a finite element method (FEM) is
shown. The aim is to validate hypothesis which have been considered in the second
paragraph for the determination of an analytical solution. Previous knowledge about
numerical resolution of partial differential equation and FEM software are required.
6.2. Presentation

For large material thickness, heat transfers in the sample are not described by equation
(1), and the following partial differential equations system is considered in spatial domain

Q={(x,y)DRX[—§,§}}, where i is the normal vector exterior to boundary

SR -

Periodic excitation moving mask
N

NN NN
AR ARNARNA P
“ \\ \\ / \\ / \

YAY \/

NI

Q

I /
y ‘ x=0 ‘
I %v\ y=-£
] -_°
2
metallic thermocouple
sample

Figure 13: 2D geometry for FEM implementation
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pCW—kAT(.,t)=O 0((x.y),t)0@xT
oT (x, y,t e
—k%=hT(x,y,t)—Q(x,§;tj D((x,y),t)D/_XT

T(x,,0)=0 O(x,y)0Q

Previous system is solved by a FEM (with an adapted discretization in space and time) in
order to estimate for the studied material if the sample thickness e is too large. Limit

thickness corresponds to isomodulus and isophaselag which do not correspond to equations
(3) and (4).

In such a framework, CPU time can be reduced by introducing complex temperature.
According to notations presented in paragraph 2.2 T (x,y,t) =T (x, y,$)e’, the following
system has to be solved:

,OCja)T(x,y,¢)—kAT(x,y,¢) =0 D(x,y)D.Q

—kw :hT(x,y,¢)—Q(x,§j O(x,y)O7

Resolution of previous system using a FEM leads to the determination of modulus and
phase lag of T(x, y,¢) which are compared with analytical solutions given in equations (3)

and (4).

In such a framework, hypothesis wr =

cq(;lCe > 1 can also be investigated.

7. Concluding remarks

In this workshop, periodic methods are exposed in order to identify thermal diffusivity. A
experimental bench is developed for educational purposes. Based on this easily
understandable configuration, several aspects can be investigated: heat transfer modelling,
complex temperature, analytical resolution, sensitivity analysis, optimal design, numerical
simulation, parametric identification, finite element method. Gradual difficulties can be
proposed to students in order to improve their knowledge about identification by periodic
method and thermal characterisation.
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Some questions for understanding
Q 1.1 Complex temperature

Assuming that the temperature within the material subjected to sinusoidal excitation satisfies
the following system of equations:

a, ot
-/ o, =CDcos(at)
Ox

Deduce the system of equation satisfied by T(x) from the system of equations satisfied by

f The excitation can be considered in the form szexp(ja)t). What can we say about
modulus and phase lag of temperature oscillations?

Q 1.2 Lock-in Amplifier
Express the modulus A, and the phase lag ¢, according to the data XXX and YYY.

Q 1.3 Study of a thin metallic sample
Calculate the diffusion lengths (unit?) for the metals whose properties are defined in the
following table. What can we say about that?

u for u for
p ¢ A f=0.01 Hz f =10 Hz
kg.m™ Jkg' K™ Wm™ K™
Silver 10500 230 413
Copper 8940 380 387
Aluminium 2700 860 200
Steel 7850 490 46

Considering the previous materials and the table below, calculate the minimum value of the
time constant r and check that wr >>1 for f >0.1Hz.

0 e h
W2 m Wm K™
5.108 10+ 10

For x>0, assuming that wr > 1, simplify |z| and & in order to express
. ‘T(x,¢)‘ depending on Q, w, p,C,e, x and 4.
. Arg (T(x,¢)) = ¢ depending on x and /.

Q 1.4 Spatial scanning analysis
Using the results of the previous question, what can be said:

. Of the plot of log‘T(x,q))‘ versus x ; give the corresponding equation.
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. Of the plot of the phase lag ¢ versus x ; give the corresponding equation.
Can the diffusivity of the studied material be deduced from these plots?

Q 1.5 Frequency scanning analysis
Using the results of the previous question, what can be said:

= Of the plot of log‘T(x,¢)‘+logf versus +/f ; give the corresponding equation.

. Of the plot of the phase lag ¢ versus \/?; give the corresponding equation.
Can the diffusivity of the studied material be deduced from these plots?

Q 1.6 Sensitivity analysis

Complete the following table by expressing the sensitivity functions considering the following

notations A = Q ;. B= /”_f . E=exp| —x f
2apCe a a
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scanning observation Sensitivity functions

Plot

o|r|
a_
oa

o

QaQ

modulus %

faf

tial
" o _ ol ol
P =C =e

dp  oC = de

799
Jda

phase lag Y
o

Versus ?

o|r|
a_
oa

ol
00

modulus

ofr| _ olr| _ o]
Jo, =C =e

frequency op oc de

oT|
!
Ox

79¢
Jda

phase lag

o

X
Ox

Versus ?
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The sensitivity functions of the modulus are plotted in the following Figure (material: steel;
spatial scanning; the excitation frequency is arbitrarily setto f =0.1Hz)

15

—_
o

[$,]

modulus sensitivity
o o

-10

-15

sensitivity functions of the modulus in spatial scanning

For a spatial scanning is it wise to consider measurements close to the origin x =07? Far
from the origin? What seems to be the optimal observation area? What can we say about the
sensitivity functions represented by the purple and green curves?

Spatial scanning (frequency : 0.1 Hz)

-
&

—_

o
”

o

phase lag sensitivity

'
L

-1.5

-2

Sensitivity functions of phase lag in spatial scanning

For a spatial scanning, what can we say about the sensitivity functions of the diffusivity and
the frequency? If the excitation frequency is poorly controlled, what can be said about
identifying diffusivity using phase lag measurements in spatial scanning ?
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Using appropriate software, draw curves representing sensitivity functions of the modulus
considering a frequency scanning in between 0.1 and 1 Hz at a distance set to 0.01m.
Analyse the results as much as possible.

Using appropriate software, draw curves representing sensitivity functions of the phase lag
considering a frequency scanning in between 0.1 and 1 Hz at a distance set to 0.01m.
Analyse the results as much as possible.

For each of the following questions, choose the best answer:

Question Answer Choice
If, during the experiment, uncontrolled variations of Q | a modulus analysis O
or e occur, should we carry out: a phase lag analysis O
If the origin position x=0 is not known accurately|a spatial scanning O
should we carry out: a frequency scanning O
If the excitation frequency is noisy, a spatial scanning | a modulus analysis O
is performed and a phase lag analysis O

Experiments for the identification of the diffusivity considering a spatial scanning.

Experiments for the identification of the diffusivity considering a frequency scanning.

Special features if time and appropriate software...

The purpose here is to implement a finite element method to simulate heat transfers in the
material. The validity of certain hypotheses made when solving the direct problem are tested.
The first hypothesis concerns the relationship between the diffusion length and the thickness
which allows for a sufficiently fine sample to consider a simplified formulation of the heat

balance. Particular attention will be paid to visualizing the importance of the ratio %/' The

second hypothesis allowing expressing by a simple expression the modulus and the phase
lag will be validated by checking the concordance between the analytical solution and the
numerical solution.

The main pedagogical objective is the use of finite element software to test experimental
configurations.

Why for a thick material the following equation does not describe the heat transfer in the
studied sample?

M+hT(x,t)—k€M:Q(x’t)

C
P, o

Considering the sample of thickness e the studied spatial domain is defined by

Q= {(x y) DRX[‘%%}}, n is the normal external vector to I = {(x —gj} 0 {(xg]}
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Periodic excitation moving mask

M ==
TR

Y xi=0
|
X y >
metallic thermocouple
sample
Heat transfers are described by the following system:
pCW—kAT(.,I)ZO 0((x.y).t)0@xT
aT(x, y,t) _ e
()1 -+ T2 y,t)—Q(x,E;tj O((x.y).r) 07 xT
T(x .0)=0 O(x.y)0Q
I+cosar . _e
With 0(x.y.r)=1¢ 2 T *=0 =3
0 if x20

The objective is to put in evidence that for a larger thickness of the sample, temperature
gradients appear in between the upper and the lower surfaces. Which material (silver,
copper, aluminium, steel) is the most likely to encounter this situation? Are gradients more
susceptible to appear at high frequency or low frequency?

u for U for
P ¢ A £=0.01 Hz £ =10 Hz
kg.m™ Jkg K™ Wm K™
Silver 10500 230 413
Copper 8940 380 387
Aluminium 2700 860 200
Steel 7850 490 46

Simulate the problem describes by the (S) system considering a steel sample of 6 mm thick
subjected to Q =5000W.m™ at frequency of f=0.1Hz with a heat transfer coefficient
h=10W.m™ K. Particular attention will be paid to the discretisation in space and time

which must be judicious.
What temperature difference is observed under the moving mask (at x=0) between the
upper and the lower surface after 10 seconds ?
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Calculate from the simulated data the phase lag over the first 10 seconds. Compare with the
values predicted with the analytical solution at x =1 mm.

Same questions with a steel sample of 1 mm thick?
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Tutorial 6: Model Reduction by Modal Analysis

F. JolyY.Rouizi, B. Gaume, O. Quéméner

Laboratoire de Mécanique et d’Energétique d’Evry,
Univ. Paris-Saclay
40 rue du Pelvoux, Courcouronnes 91020 Evry, France

E-mail: fjoly@iut.unjv-evry.fr
yassine.rouiziQuniv-evry.fr
o.quemener@iut.univ-evry.fr

b.gaume@iut.univ-evry.fr

Abstract. The aim of this tutorial is to show the interest of using modal reduction to
solve inverse problems. The tutorial is structured in two parts. The first one concerns
the construction of the modal reduced model from an already known detailed model
(finite elements). The Dirichlet-Steklov base, as well as different reduction techniques
(temporal truncation, Energetic criteria) will be investigated. The second part deals
with solving an inverse problem by using modal reduced models. During this work,
we will show the influence of the order of the reduced model on the estimation results
and on the calculation times. An example of an estimation of boundary conditions or
thermo-physical parameter characterization will be treated. The different algorithms
will be coded by participants using Octave software
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Chapter 1

Decomposition on a Dirichlet-Steklov
base

1.1 Position of the problem

Let ©Q a domain closed by its boundary I'. The spatio-temporal evolution of temperature is
modeled by the heat equation:

orT

VM € Q,Vt € RT pergr =V (kVT) + 11, (1.1)
VM eT\Vt e Rt kVT-n=h(Tew —T) + ¢, (1.2)
VM eQt=0 T=T, (1.3)

where n is the outward facing normal to I', 7; is the initial temperature, T, the surrounding
temperature, and ¢ a received heat flux density.

Figure 1.1: Physical domain

1.2 Variational formulation

Let suppose that T is sufficiently regular, for example T € H2(Q) (T € £*(Q), 0T € L*(Q),
0?T € L£2(2)). Let f a function belonging to the same functional space. The variational
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formulation is obtained by multiplying Eq. (1.1) by f and by an integration on (.
oT
pep——fdQ = [ V- (kNT)fdQ+ | ILfdS. (1.4)
o Ot 0 0

Virtually, the solution is searched in H'(Q2): with the Green-Ostrogradski theorem, Eq. (1.4)
writes:

/pcpandQ:—/kVT-VfdQ+/kVT-nde+/HfdQ. (1.5)
o Ot Q r Q

Now T only has to be once differentiable (so it can be defined in H'(€2)). Boundary conditions
appears by replacing kV7T'.n thanks to Eq. (1.2). The weak variational formulation is then
obtained:

Definition 1.2.1 Find T € HY(Q) such that for all f € H' ()

oT
/ﬂpcpatfcm:—/QWT-VfdQ—/Fhder+/r(hText+go) de+/QHfdQ. (1.6)

The following operators are defined:

Vu,v € HY(Q) CQ(u,v):/pcpude;
Q

Yu,v € HYQ) Ko(u,v) = / kEVu - Vv dQ;
Q

Vu,v € H'(Q) H(u,v):/huvdf;
r

Vu € H' VI, Toyy € £2(Q)  L(u) = /

(hTewt + @) udl + / TTu dS2.
r Q

Equation (1.6) writes on a condensed form:

1.3 Modal formulation

The decomposition of a thermal problem with non homogeneous boundary conditions on a
classical base is inconvenient. First, the sliding/dynamic separation is not satisfying, as the
resolution of the sliding temperature still involves a large size problem. Second, if the bound-
ary conditions change, the correct reconstruction of the thermal field becomes (theoretically)
impossible, as the ratio h = ky&-@ is fixed. For the same reason, it is hopeless to treat
properly a problem with a non-linear conductivity with that kind of modes. Another base is

thus defined, which is the gathering of two bases.

1.3.1 Dirichlet Base

Dirichlet base is classical. It is defined by the eigenmodes of the Laplace operator with a null
value on the boundary:

Definition 1.3.1 Dirichlet base is defined by the set of pairs (AP, VP) € RT\ {0} x H}(Q)
solutions of the following eigenvalue problem:

Q =V (kVVP) = AP pe, VP
{ V- (kvVP) pepVP, 18)

o0 vP =o.
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Eigenvectors VP are named Dirichlet modes. The eigenvalues AP, associated to each vec-
tor VP, have the dimension of frequency, and their inverses are characteristic time of the
associated eigenmodes. The weak variational formulation reads then as:

Definition 1.3.2 Find (AP, VP) € Rt \ {0} x H} () such as Vu € H}(Q).
Ka(VP,v) = APCo(VP, v) (1.9)
The following orthogonality properties are verified:

Vi? ] € N7 ICQ(‘/'L'D7V_Y7'D) = 51]7
0y (1.10)

D D

with d;; the Kronecker delta.
The set of Dirichlet modes {V;”};cy forms an infinite but countable base of the Hilbert space
H; ().

1.3.2 Steklov base

Definition 1.3.3 Steklov base is defined by the set of pairs ()\S, S) e R x HY2(9Q) solutions
of the following eigenvalue problem:

{ @ -V (bVV7) =0, (1.11)

o0 kVVS .n=X((2)8, VI sq =S.

S is the Steklov eigenvector, but by language abuse, we will denote Steklov modes the functions
VS € H'(Q), which are the harmonic lifting of S in . With the following bilinear operator

Vu, v € '), Conu,0) = [ C(@)ulomvlon (1.12)
the weak variational form of Eq. (1.11) reads:
Definition 1.3.4 Find (\%,V?) € Rt x HY(Q) such as Yv € H(Q)
/CQ(VS,U) =\° CaQ(VS, v). (1.13)

The following orthogonality properties are verified

e
Vi,jeN, KoV V) =6;——,
Con(VS,V5) = —4 .

with hg > 0 a weighted factor with the dimension of a heat transfer coefficient. Note that
Egs. (1.10) and (1.14) are not standard orthogonality properties as they result from the norm
adopted to combine both Dirichlet and Steklov bases. This norm will be explicated in the
next section.

The set of Steklov eigenvectors {S;};cn forms an infinite but countable base of the Hilbert
space HY/2(09).
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1.3.3 The Dirichlet-Steklov basis

Orthogonality properties play a fundamental role in modal methods. They ensure that the
D S

decomposition T = Zfil xin-D + Zf\;l xiViS is unique. The following scalar product is

defined:

Definition 1.3.5 Let u, v € H'(Q). The scalar product (ulv) g q) is defined

<mmHm>:=1fﬁm-Vv+hqéQ“$W” (1.15)
= ’CQ(U, ’U) + hO C{)Q(U; U)’

This scalar product yields a norm:
Vue HY(Q), lullm) = \/(ulu) g (1.16)

This norm is equivalent to the usual norm in H'(£):

vue BYQ), Nl = IVl q) + Tl o, (L.17)

Dirichlet and Steklov bases can thus be normalized with [ - || (' This new scalar product
on H'(Q) enables to establish orthogonality relations between Steklov modes and Dirichlet
modes:

Vi,jeN, (VPIV )@ =0,

[l (1.18)

Equation (1.18) allows the simultaneous use of Dirichlet and Steklov bases to decompose a
thermal field. Thus, the term Dirichlet-Steklov base is legitimate. On a more mathematical
point of view, the union of the bases of Dirichlet and Steklov {V;”}ien @ {Vjs}jeN forms a
Hilbertian base of H}(Q) @ E(Q) = HL(Q), where E(Q) C H(Q) is the space of harmonic
lifting. In particular:

oo
P, :Uf such that Yu € HY(Q), u= Z Z:EZ»XVZ-X, (1.19)
Xe{D,S} i=1

1.3.4 Amplitude equations

The amplitude equations are obtained by replacing temperature by their decomposition on
the Dirichlet-Steklov modes in equations (1.7). Dirichlet-Steklov modes are substituted for
tests functions v:

Nx
PRI DD 3 LA
XE{D,S} j=1

Nx
S Y ifca (VP VY =L (V) (1.20a)
xe{D,s} j=1

'"Hence orthogonality properties (1.10) and (1.14).
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Nx
LsisNs Y e Ka (WU

Xxe{D,S} j=1
NX NS
Yo S iFea (VEVE) 4> af H(SLS) = £ (V) (1.20D)

1.4 Numerical implementation

1.4.1 Computation of the Dirichlet base

The correct consideration of Dirichlet boundary conditions is a bit tricky. Discretization of
Eq. (1.9) yields the following eigenvalue problem:

KV;P = \,CVP. (1.21)

K and C are matrices that corresponds respectively to operators Kq(u, v) and Cq(u,v). They
are of dimension [N x N] where N is the number of nodes of the discretized geometry. They
can be obtained by classical numerical methods (finite elements, etc.) However, in the varia-
tional formulation, it is specified that solution is searched in H} (©2). What does that mean
concretely? That means that every line and column corresponding to a point which belongs
to a boundary is null. The eigenvalue problem is replaced by a smaller one:

KPvP = \CPVP, (1.22)
where matrix K” and CP are obtained by removing every line and column corresponding to
a point which belongs to a boundary.

1.4.2 Computation of the Steklov base

Discretization of Eq. (1.11) yields the following eigenvalue problem:
KV = \C VP, (1.23)

Non-zero elements of matrix C¢ are only on the points which belong to a boundary. Equation
(1.23) results in a saddle-node problem.

1.4.3 State equation

The discretization of the weak variational formulation of (1.7) yields the following matrix
formulation:

CT=-(K+H)T+U. (1.24)

The state equation is directly built from Eq. (1.24). First, T is replaced by its modal
formulation VX. Matrix V of dimension [N x (Np + Ng)] gathers Np Dirichlet and Ng
Steklov eigenvectors V;D and ViS . Next step is to project the resulting equation to the reduced
base. Concretely, this operation is made by multiplying Eq. (1.24) by TV. It results in:

'vPevPxP 4+ TvPevoxs = - TvP (K + H) VP xP
~IVP K +H) VXS +TVPU  (1.25a)

Tutorial 6: Model Reduction by Modal Analysis - page 7/23

129/339



METTTI 8 Advanced School Tle d’Oléron, France,
Thermal Measurements and Inverse Techniques Sept. 24" _ Sept. 29", 2023

vSevox® +TvicvPxP = —Tv9 (K + H) Vo X?

-~V (K+H) VPXP + TVSU  (1.25b)
If the conductivity and the heat capacity used in the eigenvalue problems and in the heat
equation are the same, then these equations might be simplified thanks to orthogonality

properties. . .
APXP 4 TyvPevixs = —xP + TvPy (1.26)
Tvicvixs + TvoevPxP = _TVvS (K + H) VS X® +TVSU (1.27)
At the steady-state, Dirichlet states are obtained without any resolution. Furthermore, if
the volume solicitation (i.e. II) is null, then at the steady-state, Dirichlet states are also

null. Finally, Dirichlet state-equation is diagonal. This property can be used during temporal
discretization: the numerical resolution is then reported only on the Steklov modes.
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1.5 Example of application

ha 0s(t)
WLl
o 0

L,
—

hY) R
o

7 o4(t)

2

— 1

Figure 1.2: A slice of the considered concrete beam

We consider a concrete beam, sufficiently long to be modeled in 2D (see Fig. 1.2). Initially
at a temperature Ty = 0°C, the beam is subjected to:

e a global exchange with the outside (T.yt = 0°C, hegt = 10 Wem 2. K~ 1);
e a time-dependent solar radiation, estimated by a simple sinus law;

Physical properties of concrete are given in Table 1.1:

k:(I/V.m_Q.K_l) p(kzg.m_3) Cp (J.k:g_l.K_l) Qs
1.4 2250 800 0.9

Table 1.1: Physical properties of concrete

1.5.1 Finite elements model

Finite element matrices are given in the working directory, and a broad outline of a finite
element code is given FE_model.m.. With a backward first order Euler scheme, Eq. (1.24)
splits in:

[C+dt(K+H)|]T(t+dt) = CT(t) + dtU. (1.28)

This equation is integrated over a time 7 = 72h, with a time-step dt = 1s. Thermal field
is recorded every 3600 s. The resulting temperature field is recorded in T_EF. To visualize a
temperature field, just type Visu(T_EF,i) with i the hour you want to see.

1.5.2 Reduced order model

Eigenmodes computation

As said above, matrices involved in eigenvalue problem (1.22) are amputated from lines and
columns corresponding to boundary nodes. They are given in the working directory under
the names K_dir and C_dir. The command line to compute modes is:

[Vec_dir,Val_dir]l=eigs(K_dir,C_dir,N,’la’);
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with N the number of desired eigenmodes. Computation of the 937 eigenmodes is quasi
immediate. Another step is necessary: these eigenmodes are defined on the 937 interior
points. They have to be resized to insert zero at the boundary points. You can find those
complete eigenmodes in the working directory under the names Vectors_Diric. The Steklov
eigenmodes are also given in Vectors_Stekl.

Modes visualization
To visualize modes, just type Visu(Vectors_diric,i) or Visu(Vectors_Stekl,i) with i the
number of the mode you want to see.

1.5.3 Orthogonality relations

Please open script Reduced_model.m. It contains an outline of the code.

Check that the following orthogonality relations are verified:
TV;YK‘/Jy = aiéijé/yy,TVzDCVjD = bZ(SZJ,TVZXCC‘/]y = Ci(;ij(sé\f'y

where a;, b; and c¢; are real values that depend on the chosen norm.
Write a loop to normalize the modes such that 7 V¥ [K + C] ij = a;0i;0xy

1.5.4 Modal model construction

Construction of the modal model is very easy once the modes have been computed and
normalized. The simplest way is to first gather Dirichlet and Steklov eigenvectors into one
matrix noted V. = {VP|V®} of dimension [N x (Ng+ N)]. Reduced matrices are easily
computed thanks to:

L="vcv, M=TV(K+H)V, N=TvU (1.29)
With a backward first order Euler scheme, Eq. (1.24) splits in:
L+ dtM] X (t + dt) = LX(t) + dtN (1.30)

Compute the reduced matrices and write the program to solve the reduced model. An outline
is given in the program Reduced_model.m. To recover the temperature just write T_red=V*X
Note: Finite elements matrix are sparse and of large size. Their inverse, is still of large size,
but is not sparse anymore. The preliminary computation of [C + dt (K + H)]f1 might not be
a good idea. On the opposite, reduced matrix are of small size and full, just as their inverse.
If dt is fixed, then the preparatory computation of [IM + dtL]f1 speeds up the temporal
resolution.

Selection matrix

In several applications, the knowledge of the whole temperature field is not necessary. The
information is only needed in few points, names observables and noted Y. Y is retrieved from
the temperature field T' by the simple relation:

Y =ET

E is basically a boolean matrix with ones at the selected points and zeros elsewhere. The
modal formulation yields:
Y =EVX
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We want to see the temperature evolution at location x = 0.55m and y = 0.95m. Use
function location(x,y) to find the point corresponding to this location. Build the reduced
selection matrix EV.

Reduced model performance

Several criteria are used to evaluate the performance of the reduced model. The first one is
the time needed to solve the temporal loop. The other ones concern the error between reduced
and finite elements model. Several error are defined:

11 (/7
<e> = / / \TFE — 7m0 dtdQ) ;e = maxmax [TFF — 7m0 (1.31)
V T 0 (9] T Q
The error on the observables are also considered.
1 T
<e>; = / Y —ymod|dt ; eooy = max |VFF — v (1.32)
T 0 T

Two reductions have to be handled: one on the Steklov modes, and one on the Dirichlet
modes.

The number of Dirichlet modes is set to 10, and the number of Steklov modes is increased
from 10 to 70, by step of ten. Compute the errors defined above. How do they behave 7 Is it
useful to retain more Steklov modes ?

Now, the number of Steklov modes is set to 40, and the number of Dirichlet modes is increased
from 5 to 40, by step of five. Compute the errors defined above.

New boundary conditions

We consider the same beam, but now the wind has risen, and the heat exchange is now
modeled by h = 100 W.m~2.K~!. The finite elements solution is given in the working directory
T_EF_h_100.mat. Try a reduced model with 20 Dirichlet modes and 40 Steklov modes, and
compute the errors. Compare to the case with h = 10 W.m 2. K~ L.

1.5.5 To go further...
Matrix shape

Visualize matrices L and M. Are they really dense matrices ?

Energetic criteria

The criteria used here is the temporal criteria, also called Marshall truncature. It has the
advantage if being immediate, but might not be very efficient. Another criteria might be
used, based on the temporal response. Assume a known finite element solution Tgpr. With
the orthogonality properties, the projection of that solution on the Dirichlet-Steklov base
writes:

X =TV(K+C¢)Tgr

5i:/$?dt

the program dominance.m computes &. For a reduced model of order 50, how many Dirichlet
modes and Steklov modes would you take following this new criteria 7 Compare to the above
study.

The modal dominance &; is defined by:
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Chapter 2

Utilization of reduced order model for
inverse problem

2.1 Inverse approach

From the knowledge of the temperature field, the aim here is to identify the evolution of the
heat flux ¢, (t) (figure 2.1) received by the concrete beam. In practice, inverse approach fo-
cuses on a part of the temperature field, i.e. an observable vector Y that gives the temperature
evolution on N,,.s particular points of interest for the user.

From the measurements Y, the real heat flux ¢, (t) is estimated by ¢, (¢). From this estimated
flux, direct model (detailed or reduced) gives an estimate of the observable, noted Y, through

a selection matrix F such as: R
Y=ET=FVX (2.1)

To quantify the quality of estimations we introduce two quantities o7 and o,,. o7 represents
the mean quadratic error on temperatures between the observable (measurements) Y and the
output Y of numerical model, while o, represents the mean quadratic error on fluxes. These
quantities are computed according to the following equations:

“ 2
S N (Y5 () = 5 (1) s
or = Nt X Nmes ( ‘ )

N, 5 2
. 21;1 (0u (ti) — Pu (t:))
O, = (2.3)
Ny

For this kind of inverse problem, two methods are often used. The first one, known as Beck
method, is sequential, and has been the object of many works. The second one, is global, and
is based on the minimization of a cost function.

Before implementing this parameter estimation problem, a sensitivity study has been made.
The sensitivity is defined by:

_ar
= o

S (2.4)

12
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Figure 2.1: Evolution of the heat flux ¢, (¢).

2.1.1 Beck method

Ounly a brief description of Beck method is given here. For further information, the reader is
encouraged to read [1, 2] for example.

Beck method is a sequential process in which the amplitude of the heat flux at each time step
@F+1 is identified from the temperature at time step k + 1. It consists in minimizing a tem-
perature difference between the measurement and the recalculated temperature. Generally,
future time steps are used to regularize the unstable character of inverse problem as well as
the lagging and damping effects due to the diffusion process [3, 4, 5]. In that case, unknown
heat flux pFT! is estimated from temperature measurements at time step k 4 1 and at ny
future time steps k +2,k+3,...,k + 1+ ny under assumption:

@ZH — ¢ﬁ+1+f = constant f € [1,ny] (2.5)

From reduced state representation (2.6):

{ LX = MX+¢, (t)N 26)

Y = EVX

a temporal discretization with a constant time step is used to obtain the excitation state at
each iteration k:

Xk = [ — AtM ()] [LXk + Atpht N (2.7)
The estimated solution is given by a least squares minimization:
¢ﬁ+l — [@75@] -1 ®tzk+1 (28)
where © and Z are defined by:
Ifny;=0
© = EV [L — AtM (t)] ' [AtN] (2.9a)
ZH1 — Yy BV L - AtM ()] [LX”“] (2.9b)
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or if ny > 0 by:

EV [L— AtM (t)]' AtN
EV [(L — AtM (£))"' + (L — AtM (t))—ﬂ AtN

0= : (2.10)

EV [z:;f (L - .AtM (1) ~] AtV

and
Y — EV L — AtM (1)) ' LX*

Y2 _ EV [L — AtM (t)] 2 LX*

VAR : (2.11)

| YRy BV (L — ArM (1)) () L

The results of this technique and the difficulties related to regularization through the future
time steps method are presented in section (2.2.1).

2.1.2 Global method

As represented in figure 2.2, the global method requests the entirety of the data on the
temporal domain. It aims at minimizing a cost function built on the difference between the
measured temperatures Y and those resulting from calculation with direct model Y. The
cost function can also be penalized by a regularization term:

T =3[

The penalisation term is pondered by a positive coefficient ¢ named Thikonov parameter.
The identification problem consists in finding the optimal solicitation ¢, such as J is mini-
mum:

Y ()~ ¥ ()t + eflgu (1) (212

@—) Measurement

Reduced Model

Figure 2.2: General scheme of parameters estimation
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Pu = arg [min J (p,,)] (2.13)

This problem can be solved with a method of descent, which requires the estimation of the
gradient of the cost function J (¢, (t)) with respect to the solicitations ¢, (¢). This is per-
formed by the adjoint method [6, 7]. This method allows to implement low-cost algorithms
compared to a finite difference method, since only the adjoint problem has to be resolved be-
sides the direct problem. As this iterative procedure may require many runs of direct model,
reduced models are perfectly fitted for this method.

The Lagrangian formulation is used to establish the equations of the reduced adjoint problem.
From the problem of optimization, described by equation (2.13), we consider the Lagrangian
formulation defined by:

Lo XN =T () + [ A (L(ou X)) dt (214
0
where L (¢, X) is the constraint equation of the state variable X defined by:

dX
L(gpu,X):—LE—i-MX%—Ncpu (2.15)
The constraint equation L (¢,, X) is by definition always zero (see Eq. (2.6)), which leads to
an equality between the Lagrangian £ and the criterion J.
At the point where the criterion is minimal, Lagrangian derivatives with respect to these three
variables are zero:

oL

o3 =0 (2.16a)
oL
9o = (2.16b)
oL

The derivative defined by equation (2.16a) retrieves the state equation (2.6).
Both last derivative (Eq. (2.16b) and Eq. (2.16¢)) bring two new relations, called equation
of the gradient (Eq. (2.17a)) and adjoint equation (Eq. (2.17b)):

VJ = ep, + N'A (2.17a)
“LA=M*\+V'E! <Y t) - Y (t)) (2.17b)

where M* is the adjoint matrix of M.
Iterative computing of the solicitation ¢, which is based on the computation of first derivatives
V J is called gradient method. In these iterative methods, the new estimate of g&ﬁ is computed

from an initial guess ¢0 by:

Putt = @b+t (2.18)

where pF is a positive scalar that represents the search step size, and w” is the direction of
descent at each iteration k.

Tutorial 6: Model Reduction by Modal Analysis - page 15/23

137/339



METTTI 8 Advanced School Tle d’Oléron, France,
Thermal Measurements and Inverse Techniques Sept. 24" _ Sept. 29", 2023

Compared to the steepest descent method, the Conjugate Gradient Method (CGM) [6, 4, 8, 9]
improves the convergence rate by choosing the descent directions that reach minimum of the
cost function faster. In this iterative technique, descent directions are obtained as a linear
combination of the negative gradient direction at the current iteration with the direction of
descent of the previous iteration:

wh=-vJk k=0 (2.19a)
wh = —VJF £k k>0 (2.19b)

and where 7* is the conjugation parameter. Various formula expression of 4* can be found
in the literature [6, 8, 9]. One can cite the Flecher-Reeves formula [4, 10, 11], given by:

e IV

— 2.20
& Jk=1|? (220)

gl

The line search in the direction w* of the step p* can be performed by secant method [12]:
e (V1 () ")
(VJ (i + aw), wh) = (VJ(g5), wh)

To illustrate this iterative procedure we give the corresponding pseudo-code algorithm.

(2.21)

k=0;

Make initial guess for @ (t);

repeat

k=k+1;

Solve for Vt € [0: 7]: LX = M (t) X + N5 (¢1);

Y (t)= EVX;

Solve for Vt € [r: 0]: —LA = M*X + V'E! (Y t)—Y (t));
VT =gk (1) + N'X;

Compute v* (Eq. (2.20)) ;

Compute w* (Eq. 2.19);

begin

Determine p* (Eq. (2.21)) ;

Solve for Vt € [0: 7]: LX, = MX,+ N (@51 + awh);
Y. (t) = EVX,;

Solve for ¥t € [r: 0]: —LA. = M*X. + V'E! (Y ()~ V. (t));
VT (@5 + awh) =€ (@1 + aw®) + N'A;

return ,ok

end

o = Pt + pru;

until Stopping criteria (see below);

Algorithm 1: Iterative procedure for GGM

This iterative calculation ends when one of the following criteria is met:

e The first is based on the evolution of functional J:
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T (7)) ~ T (") <1% (2.22)

e The second is based on Morozov’s discrepancy principle [13], stipulating that the mean
quadratic residual op (Eq. (2.2)) should be close to the standard deviation of the
measurement noise (or added noise in numerical case) op.

oT =~ OB (223)

2.2 Numerical results of inversion

In this section we present a numerical validation of inverse approach with reduced model
by comparing Beck to global method. This numerical validation consists in recovering the
identified flux ¢ (¢) from data temperature Y at point A located at (x,y) = (0.55,0.95). The
time evolutions of temperature at point A obtained by the complete model Y ops and the
reduced one Y rjs (n = 110) are presented in figure 2.3.

807

(o2}
o

O
o 40
>
5
% 20+
— —You
0 - -Yry with n = 110
-20 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7
Time (s) % 10°

Figure 2.3: Validation of Reduced Model of order n = 110.

Both temperature evolutions are in very good agreement.

The reduction errors (Y gy — Y o) for different orders reduction n are plotted in figure 2.4.
For n = 110, the error is less than 0.08 (°C) except at the sudden change in the flux density.
For the other models n = 30 and n = 50, the errors remain acceptable except, if we except
again the peak due to the sudden variation of heat flux. The choice of the order reduction n
will depend on the nature of the flux density (frequency) and the physical problem.

It is important to note that for inversion:

e The data Y is obtained by adding a normal and independent noise to the temperature
obtained through the complete model Y ¢ps. This noise is characterized by a standard
deviation o = 0.1 (°C). Only one point is considered.
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Figure 2.4: Reduction errors for different n.

e Inverse problems (Beck or global method) are solved with the reduced model (Eq. (2.6))
of order n = 110. Classically the order is chosen such that the additional error intro-
duced by the reduction is of the same order than the noise. Obviously, the use of a
reduced model facilitates and accelerates computation of [L — AtM (t)]”! at each N,
time step (size 110 x 110 instead of 1139 x 1139).

2.2.1 Beck method

On-line identification by coupling Beck’s method and reduced models has already been done
in many works [14, 2, 15, 16]. The difficulty with this method is related to the choice of the

ny future time steps.

As evidenced in figure 2.5, the identified heat flux presents disturbances for ny = 0. The
high frequency oscillations do no impact on the temperature evolution at point A as shown

0.5 L L
0

Time (s)

Figure 2.5: Evolution of estimated flux with 0,=0.1 (°C) and n = 110.
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Figure 2.6: Estimated temperature compared to the exact one.

in figure 2.6.

Table 2.1 indicates errors observed on different cases. In case of n = 110 and 0,=0.1 (°C), the
mean quadratic error on temperature o is of the same order as the added noise o,. When
=0 (°C), we note that the result is more accurate with the model of reduced order n = 110
compared to the smaller model, with a calculation time less then 0.5 s.

Now comparing the 1st and the last cases, we observe this time that the smallest model is

more accurate. This is due to the fact that the reduced model naturally filters the high
frequencies of the signal.

case | or[°C] | oy, [] | CPU time [s] |
n = 110 03=0.1 0.095 5.4 E-2 0.53
n =110 op=0 | 2.192£ —14 | 5.0 E-3 0.52
n = 50 op=0 2.8F —14 | 22 E-2 0.18
n =30 =0 1.82E —14 | 2.3 E-3 0.11
n =30 0,—0.1 0.095 3.5 E-2 0.11

Table 2.1: Inversion results by Beck’s method for different cases.
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Figure 2.7: Evolution of estimated heat flux with n = 110 and n = 30.

2.2.2 Global method
The result can be obtained either:
e By implementing algorithm 1.

e Or by using the Matlab optimization toolbox with function lsqcurvefit. This function
starts from initial guess ©*=%(¢) and finds coefficients (%, (¢) that fit the best the nonlinear
function myfun(p,time) to the data Y (in the least-squares sense). myfun(@,,time) is
the reduced order model function that takes as input a vector ¢, and returns a vector
Y ru

The obtained estimated heat flux is plotted in figure 2.8, where the exact flux is also rep-
resented for a comparison. The results presented here are obtained by keeping the default
values of the Matlab function.

Table 2.2 presents the mean quadratic errors on estimated flux o,, and on temperature o7,
as well as magnitude of computing time, for different cases.

The results clearly prove the efficiency of a reduced model in a global identification procedure
: thanks to the reduced model, the identification is done in 30 seconds with a standard laptop.

Time (s) x10°

Figure 2.8: Estimated heat flux obtained with a global method.
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case | o7 [°C] | oy, [F] | CPU time [§] |
n =110 03=0.1 0.03 4.9 E-2 28
n=110 0,=0 | 3.5E -7 5.0 E-3 28
n = 30 0,=0.1 0.05 3.3 E-2 9

Table 2.2: Inversion results with a global method for different cases.

2.3 Conclusion

This study demonstrated the interest of using a reduced model to identify thermal sources.
The obtained reduced model has proven its effectiveness by reducing the number of degrees of
freedom of the problem. For the case under study, a reduced model defined by 110 modes runs
almost 100 times faster than the classical method of finite elements. Two standard methods
were then compared to solve the inverse problem. The Beck method has the advantage
of being sequential. Nevertheless, in some other configurations, this method requires the
implementation of a delicate regularization in a systematic way. Indeed, the optimum number
of future time steps varies according to the respective importance of diffusion and advection
phenomena.

The global method is considered robust since it requires the entire time evolution of the
observable. It is thus an a posteriori method which is not adapted for a real-time identification.
Moreover, it also requires a regularization parameter (the Tikhonov parameter) that has to
be determined empirically. In the studied case, this parameter was not necessary, as the
reduction naturally filters the high frequency, and acts as a regularization parameter. In
addition, the reduced modal model decreases satisfactorily the computational times : it paves
the way to implement an almost on-line identification strategy by a variable-sized sliding
window approach. This technique was used in [17] to estimate heat flux on a braking system.
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Abstract.

The objective of this tutorial, composed of two 1h30 sessions, is to construct a virtual sensor,
that is a combination of physical sensors, associated with a mathematical model that allows
the estimation, by an inverse technique, of quantities (local temperatures or rate of heat lowss)
associated to locations where no sensor is present. This applies here to linear time invariant
heat transfer, where temperature variation at any point in the system (output) is a convolution
product between the intensity of a transient excitation (input) and a corresponding impulse
response.The first session of the tutorial is devoted first to the solution of a direct 1D problem
in a simulated case where the Laplace transforms of the 3 functions are analytically known,
with a corresponding inversion to retrieve a surface temperature or a surface rate of heat flow.
The second part of this session is devoted to experiments on a hollow cast-iron cylinder, with
2 thermocouples embedded in the thickness of its wall, with stimulation by a foil electric
resistance over a part of its inner (front) face. Either the transient temperature or the rate of
heat flow on this face is looked for. So, it requires first the the identification of the impulse
response of each thermocouple (a transmittance or an impedance), which corresponds to a
deconvolution problem in a calibration/validation experiment, followed by a new experiment for
estimating front face temperature and rate of flow by a regularized deconvolution. In a second
session of the tutorial, the identification step of the second part is replaced by the estimation
of the parameters of a model of ARX structure (AutoRegressive model with eXogenous
inputs), for retrieving the above impulse responses in a more parsimonious way.

Keywords: inverse heat conduction problem - virtual temperature sensor - deconvolution -
thermal impedance - thermal transmittance — ARX parametric model
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1. Introduction

Classical heat flux sensors do not provide really non-intrusive measurements of the transient
heat flux at a solid/solid or solid/fluid interface because their presence generates a 3D heat
transfer, if their area is small, or add an extra resistance and heat capacity, if their area is large.
In some applications, use of temperature sensors at similar interfaces may also be difficult,
because of a harsh outside environment (possible sensor destruction) or by presence of
radiation (possible different absorptivities between surface sensor and the surrounding
surface, with a resulting temperature measurement bias).

Here the alternative consists in considering an inverse input problem: one or two temperatures
are measured at different depths with respect to the excitated front face of a wall in a transient
configuration in a slab of finite thickness.

These temperatures can be expressed in terms of the unknowns of the inverse problem, which
allows the estimation of either the wall heat flux for an Inverse Heat Conduction Problem, or
the temperature at location where no temperature sensor is present once a Virtual Temperature
Sensor has been designed.

The corresponding direct problems, in a 1D heat transfer configuration, are presented in
section 2. They use models based on convolution products with corresponding impulse
responses (transmittances and impedances). These transforms, the transfer functions, have
explicit analytical expressions in 1D in the Laplace domain (see, the Thermal Quadrupole
method [1]), that are detailed in Appendix A. The values of their the impulse responses can be
found by numerical inversion of their Laplace transforms (the « operational » transfer
functions), see details in Appendix B.

Section 3 is devoted to the general subject of parameterizing a convolution product, either with
a scalar expression or in a vector/matrix form, in order to give it a finite dimensional structure
in linear algebra. Both expressions make the notion of doses of input and impulse response
appear.

The 1D inverse input problem, using 1 temperature output, is presented in section 4, with
details on 3 regularization techniques (Tikhonov, TSVD and Future Time Steps) given in
Appendices C, D and E.

Section 5 is devoted to the corresponding 1D inverse input problem, using now 2 temperature
outputs. Its main advantage is to retrieve estimations of front face temperature and rate of heat
flows independent of the boundary conditions. Derivation of the models used is detailed in
Appendix F.

If heat transfer is not 1D but still linear, with coefficients of the heat equation and of its
associated conditions that do no not depend of time, the temperature and heat flux solution
has still a convolutive nature if the thermal stimulation is separable. This is the subject of
section 6, where the impulse responses are estimated in an identification experiment for further
use in an inverse input problem after an experimental verification. Both steps require a
regularized deconvolution, whose performance can be assessed before making the
measurements, by the indicators, derived from the Singular Values Decomposition technique,
that are presented in Appendix G.
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Another type of experimental identification, using a AutoRegressive model with eXogeneous
structure (ARX) is presented in section 7. Its main advantage, with respect to a convolutive
model is the weak numbers of parameters that can reproduce the experimental output, which
is not the case for impulse responses, even if a link exists between them.

Seven appendices complete the text of this tutorial. They are followed by a list of references.

2. Direct problem in 1D using analytical transfer functions in Laplace domain

We consider here the case of a linear 1D heat transfer in a slab of thickness e heated by a
surface source P(t) (W) over one of its faces of area S. The analytical solution of this

problem, that is the temperature field 6 (x,t) (K) and the rate of heat flow @ (x,t) (W) field

can be found in Laplace domain by the Quadrupole method, see Appendix 1, as soon as the
two boundary conditions at x;, =0 and x;, =e are given. Convective and (linearized) radiative

heat losses are also assumed on both front and rear faces, towards the surrounding fluid at
temperature @, , through two heat exchange coefficients, h, and h,, see figure 1.

We assume here that @, is equal to zero, in order to have one single source P (t) only, in the
direct problem to be solved. The surface density of the source q(t) =P (t)/S (W/m?) is
absorbed by the front face ( x;, =0).

P(t)
0 ’ 0
L) —4% & %) (n, ¢
— i
0 x e "X

Figure 1 — Heated slab on its front face, with linear heat losses on both faces

Itis shown in Appendix 1 that the temperature (@) / rate of heat flow (@ ) vectors, in the Laplace
domain (noted here with an upper bar on temperatures and on the front face source) are given
by the following matrix equation:

F_O}{l OMAE BEMI OM‘Z}{AT BTM’Z} with k,=h,S and k,=h.S (1)
P k0 1 Ce De ke 1 O C\’I' DT O
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where the four coefficients A,, B,, C, and D, depend on the Laplace variable, on the area S
and on the thickness e of the slab, and on the conductivity 4 and on the volumetric heat pc
of its constitutive material).

Equations (1), and (A8a,b) in Appendix A, yield the solution of the direct problem, that is finding
the temperatures and conductive rates of heat flow on both faces of the slab, that are
proportional, in the transformed domain, to the transform of the given stimulation P (t):

0,=2z,P with Z,=A,/C, ; &, =W P with Wi =(C,+k,D,)/C, (2a,b)
0, =2, P with Z, =1/C; ; @,=wZP with W =Kk, /C; (2¢,)

A specific notation is usedhere. L[ .]to designate the Laplace transform in time of a function
depending on both space (x) and time (f) :

t
v (X, p)sL[y/(x, t)]z J.o w(x,t)exp (-pt)dt for w=6 or @ (2e)

So, in the Laplace domain, temperature responses as well as rate of heat flow responses are
proportional to the surface power excitation P, that is the cause of the corresponding
transient heat transfer. Mathematically speaking, P (t) is the unique (power) source which

differs from the front face rate of heat flows @, (t) (proportional to the material conductivity

and area and to the local temperature gradient), because of convective and/or radiative losses
that are linearized here. So, if P(t)is an incoming radiative rate of heat flow, @, (t) is the

corresponding absorbed conductive flow.

Its consequence, the temperature rise on the front face, can be considered as a “pseudo
source” and the corresponding temperature/heat flux responses are easily deduced from
equations (2):

0, =W, 6, with w,=1/A, (3a)
@, =Y,, 6, with y,, = (C_+k,D,)/(A +k,B,) (3b)
D, =Y., 0, with y =k, /A (3c)

Equations (2a to d) and (3a to ¢) have the same generic form:

y(P)=h(p) U (p) (4a)
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where h (p) is called a transfer function, the input u being either the real heat source P, or the
pseudo sources 6, ord,, while the output y is either the temperature ¢ or the rate of heat
flow @ on one face of the slab or inside of it.

In order to retrieve the solution of the inverse Laplace transform vy (t) of y(p), two methods
are available:

i) The first one consists in calculating the exact Laplace transform of the input u (p) of u(t),

which is possible if an analytical expression of u(t) is available, and to multiply it by h(p).
Once the analytical expression of y(p) is available, return to its inverse transform can be
implemented by various techniques, either analytical or numerical, detailed in Appendix B.

i) The second method consists in inverting the transfer function ﬁ(p) first, using one of the

techniques described in Appendix B, in order to get its corresponding inverse Laplace
transform h(t), which is called the impulse response. It can also be considered as a Green's

function, for the special case of linear time invariant systems (see section 6 further on). This
impulse response can be (see Appendix A for the complete expressions of the corresponding
transfer functions) :

- animpedance (in KW".s™) z,(t), z, (t) or z, (t) (input, the real power source P (t),
in watts and output, a local temperature in kelvins), or an other impedance z;) (t),
Z; (t) or z;( (t) where a pseudo-source, the front face rate of heat flow @, replaces

P,

- a power transmittance (in s™) wg (t), w2 (t) or w (t) (input, the real power source
P (t), and an output, a local rate of heat flow, both in watts),

- atemperature transmittance (in s™) wq (t) or w,, (t) (input, a pseudo-source, the
front face temperature 6, (t), and output, a local temperature, both in kelvins),

- an admittance (in W.K".s™) yqq(t), Yeo (t) OF ¥, (t) (input, a pseudo-source, the
front face temperature 6, (t), in kelvins, and output a local rate of heat flow, in watts).

The second step in this second method consists in using the return from the Laplace domain
of equation (7a) into the original time domain that makes a convolution product appear:

t t
y()=(h*u)t) = joh(t—t') u(t') dt' = jou t—t')h(t') dt’ (4b)

Remark 1: Equation (4b) shows that the convolution product is commutative, which means
that the two functions h(t) and u(t) can be exchanged in the definition and the

practical calculation of the output y (t).
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Remark 2 (important): The various analytical close form expressions of the transfer functions
(operational impedances, transmittances and admittances), in the Laplace domain,
are given above for an homogeneous slab in transient 1D transfer, with linear heat
losses over both of its faces, see equations (2a) to (6¢). However, analogous
transfer functions exist in transient 3D linear heat transfer in material systems, if
some conditions are met, see [11], even if their corresponding expressions are not
available. In these more involved configurations, the inverse Laplace transforms of
the transfer function, that is the impulse response, can be found by model reduction,
if a detailed numerical solution for the output is available, or by model identification,
if experimental measurements of both both input and output have been made, see
section 3.2 below.

Three conditions are necessary for an impulse response to exist, in a Single Input/Single
Output (SISO) case in a transient 0D, 1D, 2D or 3D heat transfer case: i) Initial steady state
temperature field, ii) Space/time separation in the writing of the thermal source for a detailed
model of transient diffusion with boundary conditions and iii) This model has to be Linear with
Time Independent coefficients (LTI). Forced convection in a porous medium, or in a heat
exchanger, with a 3D velocity field that does not vary in time, can meet these conditions [14].

3. Direct problem in any dimensions

3.1 Scalar form of a discrete convolution product in heat transfer

By definition, the 3 functions y, h and u involved in convolution product (4b) are equal to zero
at time t = 0 and the source u departs from zero at time t = 0* , that is at a time immediately
past zero. This departure from a zero level for u is the definition of the origin of the time scale.
This stems from the fact that the output of this model is a forced one and that no relaxation of
a past non-zero output levels is considered here. So, one writes here :

u@)=y(@©)=h@©)=0 and U (0 )=y(@O)=h(0)=0
(5)

With)’((t)z% for x=u,hory

Equation (5), means that at time 0 the 3 functions, as well as their derivatives, are equal to
zero, even if a sudden change, for example to a finite or infinite level can happen at a positive

time t = 0" . In that case

In practice, the output is calculated, or measured, on a discrete time grid using a discretizetion
or acquisition time step At and model (4b) is written at a time t, = k At for k>1and a numerical

quadrature has to be made:
1
At j

k - t
Y =Y (L) = AtZ hj l]k_j+1 with X; =1 X; and x; = IJ x(t)dt for x=h or u
=1

(6)
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In this notation X, is the dose of function x(t) on interval ]tj,l, tj], while X; is its average
value on the same interval. Let us note that the zero value of j corresponds to initial time,
where t, =u, =h, =y, =0. Of course approximation (6) is valid if Atis small enough to

make the approximation converge.
Remark 3: The numerical quadrature above of the continuous integral consists in replacing
the 2 original functions u(t) and h(t) by their averaged values, l]j and ﬁj, that

solely depends on their doses ﬁj and Gj over a given time interval of duration

At . The calculation of doses can be made through the use of either the cumulative
input, or of the step response. This last one is the response to a Heaviside input
of unit level and is also the primitive of the step function. A new notation is
introduced here, where a capital letter X (t) designates the primitive of a function

X (t) that meets conditions (5) :
t = 1 _
X(t)=_|' x(t')dt' < X@) ==xX@ for x=h oru (7a,b)
0 p

An exact expression of this integral, in terms of doses, is available on the time grid:

K
X(tk)zz:ij for x=h oru (7c)

i=1

So, the dose of the input or of the impulse response is simply the variation of the cumulative
input or of the step response between the two bounds of the corresponding time interval :

Xj=AX; where X; =X (t;) and AX; = X; —X;_; for x=u orh (7d)

So, equation (6) takes the following form, sometimes called the Duhamel convolution product:

M-

Y =Y (L) = AHj Uy _iyq (7e)

i=1

Remark 4: The exact step response H (t)can be found by numerical Laplace inversion of

H(p) = h(p)/p if the explicit analytical expression of the transfer function h (p) is
available, see (7b).

Remark 5: Because numerical quadrature (6) is just an approximation, valid for small time
step, its inversion, for known exact or noisy input and output (model
reduction/identification problem), see section 3.2, is not able to bring any

information about the point values of h(t) within the ]tj_l, tj] interval: only doses,

or averaged values, also defined in (6), of this function can be estimated . Let us
also note that even if function h(t) is not bounded on a given time interval, its dose
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can be calculated. This is the case for the front face time impedance h(t) = z,(t)
, Whose Laplace impedance is given in (2a). Its short time approximation is
z,(t)=1/(b \/H) , Where b is the thermal effusivity of the material, see [1, section
1.4.1]). It goes to infinity as time t goes to zero whereas its corresponding step
response H (t) = Z,(t) = Zﬁ/ (b \/;) is finite, which yields a dose of impulse

response on the ]tj,l,tj] interval that this calculated by (7e):
h =2, (t) = (2/(bx/;))(\/t7—\/t: )

Remark 6 : If the input u(t) is both bounded and continuous, but only known on the two
bounds of the [tj,l, tj] interval, a good approximation of its dose is :
_ At
uj ~ ?(u(tj,1)+ u(t;)) (7)
Remark 7 : If there is a local discontinuity of the input at time t; , right and left limit values
around this time are used and this approximation becomes:
At

SR

2w+ utyy) (79)

(u(tj_1)+ u(tj—)) and U3 ~ -

3.2 Vector/matrix form of a discrete convolution product in heat transfer

Equation (7d) can be given the following expression, involving column vectors and matrices:

_y1 =y(t1)_ Xy
. o Y2=Y(tp) X;

y = ~ N(u) h = n N(h)u with y =|ys=y(t3)| ; X =|X3| for x=h or u (8a)
Yk =Y(t) ] Xy

Here N(.) is a square matrix of size k X k ,that is a function of a column vector of size k x 1

_‘//1 | | V1 |
YV, Wi 0 ¥,
N (W) = |V Y, 4 where g = Vs (8b)
LYk Yka Yva2 = Vi L ¥k |
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N () is a lower triangular Toeplitz matrix of order k, whatever the nature of vector g .

The set of real-valued lower triangular Toeplitz matrices of a given order, associated with the
matrix addition and the multiplication by a vector, constitutes a commutative ring [15]. This
kind of structure is both commutative and associative, which means :

N (Wl) w, =N (Wz) v, and N (‘”1) N (Wz) Y, = N (N (‘pl) ‘”2) Y, = N (‘”1) (N (Wz) ‘”3)
(8c)

An alternate expression of the vector of doses of input and impulse response is available, using
their expressions (7a,b,c,d) in terms of their cumulative doses X = At X :

X =N(g) X = X =(N(g)) "X =N(@")X for x=u or h
(8d)

where X =| X, | ; g=|1] and g'=| O

X, 1 0

So, the corresponding alternate expression of the convolutive model becomes, using the
properties of Toeplitz matrices and the relationship between doses and internal averages is:

y = N@")NU)h = N@@")NH) u (8e)

The interest of this model is to use only cumulative vectors U and H and to replace doses by

interval averages i and h, whose absolute levels can be compared to the corresponding
levels of the continuous functions u(t) and h(t), disregarding the magnitude of the time step

At.

From now on, we restrict the generality of model (8a) to cases where the impulse response
and input are both bounded and continuous on the ]O, tm] time interval, where t, = mAt is

the final time of observation. So approximation (7d) is used and model (8a) becomes:
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y = M(u)h = M(h)u  where M(u) = At N?(f) N(u) and M(h) = At N?(f) N(h)

(8f)
_1/ 2_ _Xl =X(t1)_
with f=[ 0 |; x=[xg=x(t3)|; and X =N(f)x with x =Atx for x=h or u
| 0 | | X =X (t) |

So approximation (8e), in case of continuous and bounded functions or possibly (7g), in case
of local discontinuiti(es), can be used to solve the direct problem where input and output are
known on a discrete grid only.

Let us note that equation (8f) corresponds to the two models that can be used for 3 different
inverse problems, numbered 1 to 3 that are detailed below.

If the impulse response h is unknown, it has to be identified by inversion of matrix M(u), for
the y = M(u) h version of the direct problem. This type of identification problem concerns
two applications:

1) The data of the inverse problem can stem from the solution (output) y of a detailed
model, that is the solution by finite elements or by any numerical solution of the
heat equation with its associated boundary conditions for a given input u . This
type of inverse problem is called model reduction, since the detailed model will
be replaced by a reduced model, here y = M(h) u the convolutive model, here
y = M(h) u, for future diverse direct or inverse applications. The interest of this

reduced model is that its output is simpler and faster to solve, see lectures 7A and
B in this school.

2) The data of the inverse problems can stem from a calibration experiment, where
the input u and the output y are measured, possibly with noise present in the two
experimental signals. This type of inverse problem is called (experimental) model
identification, where no detailed model is not implemented, with exactly the same
type of future use. However Model identification problems require generally the
use of a regularized inversion, because of presence of noise in the data, which is
not always the case for model reduction.

3) If the impulse response is known, after a model reduction or identification, and an input u
(also called a “source”) is unknown for a given experiment, where the output y is measured at

one location of the system (it can also be extended to several point peasurements, see section
5). So, it is matrix M(h) that has to be inverted in the form y = M(h) u of the direct problem

(8f). This type of inverse problem is called a source estimation problem, which is called, in
heat transfer, an Inverse Heat Conduction Problem (IHCP) if u is a flux or rate of heat flux,
or a Virtual Temperature Sensor (VTS) if it is a measured temperature variation.
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4. Different types of inverse deconvolution problems in time in 1D

4.1 Recap

The most general form of the discrete convolutive model, is given by equation (6), for a scalar
version, or by equation (8a) for its vector/matrix version. These two versions of the same model
use a dosal parametrization of both input and impulse response that explain the instantaneous
response Yy (t)at discrete instants of a time grid. The doses of a given function x (t) are just
the integral of a this function on a given time step .They are valid if the calculated response do
not vary when the time step decreases.

From now on, we'll be using the vector version, which makes writing more compact. Let us

also note that in the direct problem, where doses u and h are known, both quantities
commute in (8d).

4.2 Inverse heat conduction problem and virtual temperature sensor
4.2.1 Position of the inverse problem (IHCT or VTS)

In the preceding configuration depicted in Figure 1, we are interested in estimating the front

00

face rate of heat flow @,(t) = -/IS& using the measurement 6% (t)of the rear face

x=0
temperature 6(t) on the [0, t; ] time interval at a point P at a depth x (0 < x <e) where a

temperature sensor is present. This problem is called the Inverse Heat Condition Problem
(IHCP), see Beck et al. [9] and is based on model (A13b), see Annex A, written with the

assumption hy =0= @, (t)=P(t) and z, =z, .

0=2, 8 <= 0@1)=(z*d)1 (9a, b)

Instead of looking for the front face heat flux ¢, (t), that is a Neumann boundary condition, we
can try to recover the Dirichlet boundary condition, that is the front face temperature 6, (t),

with the same local temperature measurements 9% (t). This corresponds to the use of a
Virtual Temperature Sensor (VTS), see [10], and is based on model (A13a), see Annex A:

0=Viyo 0 <  0)=(Wy*6)) (10a,b)

In both cases (IHCP or VTS) the discrete inverse problem is an inverse input problem whose
direct model can be put under the form (8e), that is :

; 3 A =N(@")N(Z,) and U =@, in the IHCP case
y =AU =N(@")N(H) U with L (11a,b)
A =N(@")N(W,,) and U =0, in the VTS case
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Here Z, is the cumulated impedance while W, is the cumulative transmittance, while of the
matrices and vectors present in the above equations are now of order k = m.

Let us note that if function u(t) is bounded and continuous, the above model can be given the
following form :

y =B u where B=N(g") N(f) N(H) since u=N(f)u (12a, b)
However this writing is not really useful for the inverse problem, since inversion of (12b) is:

u=(Nf)"d=N¢F*")d where f*=2 [1 11 -1---(-1)““'1] T (120)

So, because of the oscillatory nature of the coefficients of N(f *) , it is not possible to retrieve
the exact instantaneous values of the input, even if its interval averages are exact.

Each of the two inverse problems (11a,b) is a deconvolution problem, whose solution, the input
U(t), is very unstable, that is very sensitive to the level of noise in the data, that is in the

measured values of the exact output y (t) = (x, t), if the parameters of model (11a,b), that is
the cumulative impulse response H(t) = Z, (t) or W, (t) is perfectly known. It results from
the numerical inversion of the analytical transfer function h (p) , or of its primitive, the Laplace

transform H (p) =h (p)/ p of the step response here, see equation (7c). This ill-posed
character derives from two factors:

i) In real physical or in numerical experiments, the output y (t) is not known in a continuous
way. It is observed, or calculated, for discrete values of the time variable on the [0, tf]

time interval, t; =t being the last time of measurement, and the preceding convolution
product becomes:

t
y(tk):j kh(ti—t')u(t')dt' with t, = k At for k=1tom and At =t; / m (13a)
0

So, in order to have a finite number of unknowns (m at most), the 3 functions present
in (11a,b) have been replaced by their parameterized form, their interval averages or
doses, which is described in section 3 above.

i) In experiments, the different measured values yg** differ from their exact theoretical
counterparts, that are corrupted by some measurement (additive) noise &; :

Yl =y () + & (13b)

where this noise is a random variable, characterized by a given probability law of zero
mean (its expectation is equal to zero).
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4.2.2 Regularization of the IHTC and VTS deconvolution problems

We now focus on point ii) above. The solution of system (11a,b, or 12a) is not immediate and
its exact right member y has to be replaced by its measured noisy version y *® , with:
exp _

y y+& with &=[¢g & - & - gm]T (14)

where exponent T designates the transpose of a matrix.

So, instead of solving one of the equations (11), we have to solve the same equation where
y ®Preplacesy , with the following solution:

—l+e; =Aty®™® = e.=A'¢ (15a,b)

o

a

Here U is the estimated input interval average with e; the vector of the corresponding
inversion errors. Its euclidian norm (its length) can be huge if the noise is not equal to zero.
This stems from the ill-posed character of the system matrix A = N(g*) N(H), which is also
the sensitivity matrix of the output to the parameterized input. Its determinant, equal to
(H, At)m (it is a triangular matrix), can become very small in the case of a small time step

corresponding to a good resolution of the exact impulse response. So matrix A has generally
a very high condition number (see the section about the singular value decomposition of a
sensitivity matrix in lecture L3 about the basics of linear inversion) and one shows, see
Appendix G:

v2
m
leg |/]a| <cond(A)|e|/||y| with |¥]= [Z l//in for y =0,e5,yore (16)

i=1

This means that a high condition number acts as a multiplier of the noise-to-signal ratio, with
a high relative error for the parameter to be estimated.

One shows in the same lecture that the variance/covariance matrix of the estimate of u
depends linearly on the variance/covariance matrix of the measurement noise. In case of an
i.i.d. (independent and identically distributed) noise of standard deviation o , one shows that

the standard deviation oy of each component ﬁi of the estimate of U is proportional to the
corresponding square root of the diagonal component of the inverse of the information matrix
AT A:

o, =o\C with C=(ATA)" (17)
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Since the lower triangular Toeplitz matrix A may be close to singular, the same is true for AT A

and the diagonal components of C may be very large, resulting in high values of the standard
deviations of the estimated parameters.

So, model (11a) has to be modified in order to get stable estimates, see lecture L6 about
inverse problems and regularized solutions. Many different methods exist, such as truncated
singular value decomposition (TSVD), see Appendices C and D, or Tikhonov regularization,
see Appendix D, to give a few examples of full domain regularization techniques, where the

solution is found in one shot on the [O, t; ] time domain. They all require the adjustment, that is
the optimization, of a regularization hyperparameter hp, in order to get a root mean square
residual of about the same size, but not lower, than the standard deviation of the i.i.d. noise:

Vows Greg(p) im0 with  Jos () =y ~A Q)] (18)

Here ﬁreg is the regularized (parameterized) solution, which depends on h, while Jg 5 (.) is

the ordinary least square sum, a scalar function whose argument is any value of the parameter
vector. This rule for choosing the optimum regularization hyperparameter is called Morozov’s
discrepancy principle [9].

Let us note that the non-regularized estimate defined by equation (15a) corresponds not only
to the minimum of Jg, 5 (.) but to its zero and is in fact the Ordinary Least Square estimator

noted as Ug, g

Jois (ﬁ) =0 = ﬁ: u:OLS (19)

This stems from the fact that matrix A is square: the number of unknowns and of data are
equal. This type of estimation is called exact matching.

Another regularization technique, the function specification method, also called method of
future time steps (FTS) [9] is detailed in Appendix E. It differs from the above mentioned
techniques since it is not a whole domain, but a sequential regularization technique.

Any of the regularization techniques (such as Tikhonov, TSVD, FTS) can be applied to get a
regularized estimation of either the front face rate of heat flow (IHCP solution), see (11a) or
the front face temperature (VTS solution), see (11b), once a temperature ¢ has been
measured inside the wall.

However, in the 1D case studied here, the model of the output of the unique sensor used
depends on its position x, of the thermal properties (4, a) of the constitutive material and on

the level of the heat exchange coefficient h, on the rear face and of its area for both the VTS
case, see equation (A13a) defining w, , and for the IHTC case, see equation (A13a) defining
z, . These parameters may not be perfectly known. So, an error on h, for example, can lead
to some bias in the estimated values of 6, or @, if the sensitivity coefficient of one of the two
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above transfer functions to this parameter is not negligible. To prevent this for happening, it is
possible to use two temperature sensors instead of one.

5. Solution of the inverse 1D problem using two outputs

We consider now two temperature sensors, located at depths x; and x,, with x; < x,, and
whose exact temperatures are 6, and 6,, see figure 2.

P(t)
0 7
< hy) 0 %% % (h, &
—| : :
—_— -
—
0 x,x, &€ "X

Figure 2 — Heated slab on its front face, with two internal temperature observations

The idea is to get a model that relates ¢, and 6, to the front face temperature ¢, and to the
front face rate of heat flow @ .

So, starting from a quadrupolar relationship between points 0 and x, and between 0 and x,,

one shows in Appendix F, that equation (F6a) leads to the following model for the virtual
temperature sensor :

sinh ((x2 —x, )P/ a))
sinh (x,+/p/ @)

(20a)

_ _ - _ — sinh (x;\/p/ a) =
Qs =Wyrs G With 875 =6 — : 0

sinh (x,+/p/ @) 2

In equation (20a) above, &5 is the equivalent output for the 1D model of a virtual temperature

sensor. In the Laplace domain, itis a linear combination of two exact temperature observations,
6, and #6,. It depends on both of them through the following relationship :

_ _ - inh (X,
Brs = 0 —Wy,° 6, with W),° = S_m (wp/a) (20b)
sinh (x,/p/ a)

where wy, ° is a correction transmittance used to make the equivalent temperature ;5 differ

from @, by substraction of the convolution product wys * 6, , which takes the influence of 4,
into account.
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So, this VTS sensor 6,15, can be expressed as a linear combination of the two physical signals
in the time domain too:

Oyrs (1) = 01(t) — (Wyrs * 6) (1) (20c)

with a single input single output equivalent model being :
Oyrs ()= (Wyrs * &) (1) (20Db)

In the same way, equation (F6b) in Appendix F leads to the following model for the inverse
heat conduction problem :

1 sinh ((x2 - %) ,/p/a)
ASpla cosh (x, «/p/a)

-~ = = _ ~ = _JHCP ;
Outc = Zipcp Do With Zycp = and Gyrc =0, — Wy, 6,

(21a)

In model (21a) above, 6, (t) is the equivalent output for the 1D model used for the inverse

heat conduction problem using two temperature measurements, ¢, and 6,. It depends on
both of them through the following relationship :

~ ~ ~ . _ cosh (x;+/p/ a
rce = O —Weor' G, with W™ = bgyp/2) (21b)
cosh (x,4/p/ @)

IHCP

where w,, " (t)is a correction transmittance used to make the equivalent temperature 6,-p

differ from @, by substraction of the convolution product wy;F * 6, which takes the influence

of @, into account.

Remark 8 - Alternate derivation of the 2 temperatures output 1D models for the 2 inverse
problems

Let us note that the two models (21a) and (21a) can also be derived, by expressing the
conductance k, as a function of w,, = 8 / §, in equation (A13a) and as a function of

Z, = 0 | @, in equation (A13b):

kZAeg:Ae—xé_’i) : k:Ceé__Ae—x@_O
® B,, 6, -B.0 ® By, @ —-D,0

(22a, b)

e—X
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If equations (22a) and (22b) are written for both locations x; and x, , elimination of Kk,
in both resulting equations yields models (21a) and (21b).

So, the VTS and IHCP problems, in case of 2 temperature measurements correspond to the
deconvolution of the following model outputs:

y =05 ; H=W,;5 and u =6, inthe VTS case

y .
Y =0cp s H=2Z,c and u =@, in the IHCP case

(23a,b)

AJ:N@WNmnjwm{

The real advantage of this method using the signals of 2 sensors is to be independent of the
value of the front and rear face conductances k, and k, and to avoid a possible estimation

bias caused by an imperfect knowledge of the external boundary conditions.
6. Solution of the inverse multidimensional problem using prior model identification

The quadrupolar type models presented in sections 2, 4 and 5 can be used for VTS or IHCP
applications if heat transfer is 1D in the wall. If it is not the case, a 2 or 3D detailed model, often
numerical, has to be constructed. This type of model is useful for studying the internal type of
transfer, and to make sensitivity studies of its outputs to its various structural parameters, but
it does not guarantee the absence of bias for the solution of the inverse problem, a variation
of temperature or of rate of heat flow on the heated area of the front face of the slab, because
of errors of these parameters that are only “supposed to be known”.

So, the alternate solution is to identify the direct model through a calibration experiment first,
(this is called “model identification”) before using this model to estimate the front face
temperature or rate of heat flow in the experiment of interest. In order to construct a (direct)
reduced model through the experimental identification phase, one has to choose its model
structure. In this tutorial, this structure is either a convolution product, which is developed
below, or an ARX one, which is presented in section 7.

We have focused in [11] on a physical system that is modeled by a linear partial differential
equation, such as the heat equation and of its associated boundary and interface conditions
whose coefficients do not depend on time.

We showed that, starting from steady state :

- if at time t = 0 a unique heat or temperature source changes from a initial steady
state level ug® to a transient ug® + u(t),

the variation at any point P

- of temperature y(t)=60@t)=T([P,t)-T (P, 0),
- or of (Fourier) heat flux y = ¢, (P, t)—¢, (P, 0) in any direction d,
- or of the rate of heat flow y = @; (t)— @& (0) through a given surface S,
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is a convolution product between u (t) and a corresponding impulse response h (P, t)or
h (S, t). So even if the transfer is multidimensional, models (4a) and (4b) are still valid:

y=hu N y () = (h *u)(t) (24a,b)

where, depending on the definitions of input u and output y , the impulse response can be an

impedance z, a power transmittance w? , a temperature transmittance w or an admittance y
, according to the definitions given in section 2.

In the same way, the parameterized versions (6) and (8a) of this type of model, under a scalar
or a column vector/matrix form, still hold.

k
Y = At ﬁ] l]k_j+1 = y = A_lt N(lj) ﬁ (25a,b)
j=1

Remark 9 - A second condition on the thermal source (either a power change in watts or a
temperature change in kelvins) for getting a convolutive model is that it should be
a unique one, which means that its support in space should not change with time :
the source should be fixed.

Remark 10 — Whatever the dimensionality of the direct problem, one shows [11] the following
property for any impulse response, that is the steady state form of equation (4b):

y® = H® u® with  HS =J' h(t) dt (26a,b)
0
with superscript ss designating a steady state value here.

This means that if an asymptotic regime, that is a final steady state, is reached,
the output change with respect to the initial steady state, is equal to the simple
product between the input change and the time integral of the impulse response.

The only difference with the 1D case is that the analytical expressions of the transfer functions

h are not available anymore. So, they have to be identified on an experimental basis, where
both input and output are measured and where the parameterized forms of the convolution
product (32b) are written as:

k
~ 1 e~
yk = At h] Uk_]+1 f—g y = E N(U) h (27a,b)
j=1

In this tutorial, the material system is composed of a hollow half cylinder made out of cast iron,
with a foil electrical resistance stuck to the central part of it inner surface, with a full 180°
angular coverage, but with a height smaller than the half cylinder height, which makes 3D
effects inside the cast iron wall. A thin thermocouple has been set between the front wall and
the foil resistance and two other thermocouples have been inserted inside the wall. Both
corresponding temperature rises 6, (front face) and 6, (internal) are measured, together with
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the external ambient temperature through a 3™ thermocouple, as well as the electrical power
P dissipated in the foil resistance, and the objective is to reconstruct the power P using the 2
temperature response only.

So, the 2 experiments are the following ones:

i) Calibration experiment

A power step P (t) is imposed and the experimental signals P (t), 65 (t) and 6% (t) are

measured.
The 3 h(t) impulse responses z, (t), z, (t) and w,, (t) defined by:

b= (20 * P) (t) ; 0,=(z,* P) (t) ; 6= (W * ) (1) (28ab.c)

are estimated using the inversion of the linear model (33a,b), using one of the regularization

methods described in Appendices D and E. The corresponding regularized estimates h%@ are

called 75, 25 and W& (the tilda symbol over the 4 quantities has been removed here, for

alleviating the notation)
ii) Validation experiment

A second experiment, used for validating the concepts of VTS or IHCP is made, with a different
power simulation P¥? (t) and the same kind of temperature measurements 6y (t) and &) (t)

. The corresponding regularized estimates (G'? , using (27a,b) with h = h"® are called:

- Gy (case of the VTS, for y = 6" and h =W2),
- Py® (case of the IHCP, for y = 95 and h = Z&*
- P () (case of the IHCP, for y = 6 and h = Z{*)

Of course, it is interesting to compare gy and 6, , as well as the three thermal powers
Py, P (t) and P "2

Remark 11 - Contrary to the model used for a temperature estimations with a unique
temperature sensor presented in section 4, see equations (9a,b) and (10a,b), the
models used in the identification/validation technique do not requires the
knowledge of any boundary conditions, here the conductance of the heat losses
on the rear face k., since they are implicitely taken into account in the phase of

calibration of the impedances and transmittance. However, the IHCP presented
here differs since it is not the front face rate of heat flow @, which is estimated,

but the dissipated power P . Hence, if @, looked for too, its estimation would

be, with the only use of the 6% data of the validation experiment:
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Q’;Oval _ P"lval _ kgom égal (29)
So, a nominal value k{°" for the conductance of the heat losses on the front face k, is
compulsory.

Only the use of a detailed model describing the 3D transfer would allow to reach the estimation
of k, using surface or internal temperature measurements in the wall.

7. Use of an ARX model for IHCP and VTS problems
7.1 Structure of an ARX model

An AutoRegressive with eXogenous input model (ARX) has the following structure, in the
Single Input — Single Output (SISO) case :

na rlb
ARX :
Yo =~ Zai Ye-i T Z bj Uk jiaon, + & =VYii (Y, U;ng,NpN )+ € (30)
i-1 ji=1
i <k j <k

IA I

The output y, =y(t,), with t, =k At and k> 0 , of the model at time t, is supposed to be
a linear combination of the n, >0 outputs at the previous times vy, ;, the « autoregessive
terms », and of the n, >0 inputs at present and previous times u (ti,jfnﬁl) , the « eXogeneous

terms », with a possible time lag equal to n, At, with n, >0.

Remark 12: The perturbation term e, is supposed to be a white noise, that is an independent
and identically distributed random variable, with zero mean. This definition of a
white noise is valid within the context of study of time series only (in signal
analysis, the Gaussian character of this random variable is added). This type of
ARX model, which belongs to what is called a "grey box" model, has been
extensively studied by Ljung [12]. The “grey” character of this model only
concerns cases where the existence of an exact deterministic model linking
output to input(s) is not known. This is not the case here, in LTI heat transfer
since, in the SISO case, an impulse response exists linking output to input.

Remark 13: Perturbation e, is also called “equation error” term, since it is an additive term

that applies to the right member of equation (30), where the outputs are present
on both sides of its equal term. Another model exists, called Output Error model,

where this error, noted ekOE here, that applies to the output only:

Y = X + €25 where x, = yet¥(y,u;ng,ng,n,) (31)

This error ekOE is simply the output measurement noise, noted ¢, in equation (14).
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Remark 14: Contrary to what can be found in Ljung [12], the right term of model (30) includes
aterm a, u, (for a zero delay: n, = 0). This term is useful in cases where input

and output occur at the same location. This is for example the case for the front
face temperature response to a front face thermal power thermalization, that is

for h = z,in model (9a,b).

The order of the ARX model is determined by the triplet(n,, n,, n,) . In the present context
(LTI heat transfer with SISO configurations) :

- the output y is an internal or surface temperature variation 8 (P,t) =T (P, t) - T (P, 0)
at point P in the wall,

- theinput u corresponds either to a source or to a pseudo source u(t), with u = g, (VTS
case) or u = @, (IHCP case).

7.2 Link between ARX and convolutive models

We notice that if n, is null and if n, is equal to the number m of times of measurement then

the ARX model is similar to the parameterized form (6) of the convolutive model presented in
section 3.1. This means equation (30) can be recasted to make averaged values of the

corresponding input u(t) over the |t _,, t, ] interval appear.

This property is demonstrated below, where 2 vectors gathering the a’s and the b’s
coefficients are introduced:

B T
Qae=|12a @ 2,00 where dim (a,.)=mx1;a=[a a - a,]
L m-na-1
r T
Duge=|0 -0 b b, - b,0--0| where dim(b,,)=mx1 ;b=[b b, - b ]’
nr m-nr -nb

(32a,b)

The matrix function N(.) defined in equation (8b) is introduced here, with its dimension k
being equal here to the number of observation points m and the product N(y) &, is

calculated using a partition of both matrices:

1 0
N(y)alarge = (I:y Na (y) Ngomp (Y) }) Onaxl + a =Yy + Na (y) a(33C)
0 (m-na-1) x 1 O(m*nafl) x1
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Here the dimensions of matrix N_(y) are mxn, and this matrix, as well as its right

complementary matrix N;°™ (y), are given below, using Matlab® convention for designing
the coefficients of a matrix :

N,(y) =N,(m,2:n_+1) and N°™ (y)=N,(m,n,+2:m) with N =N(y) (33d)

The same kind of partition is made for the product N(u) b

large *

0nrxl 0
N(W) Biuge =[O Ny @) NE™ () ])| | Ops [+| B =N, (u) b (33¢)
O(m—nr—nb)xl O(m—nr—nb)xl

Matrix N, (u) , of dimensions mxn,, as well as its right complementary part, are defined
below:

N,(u) =N, (m,n, +1:n +n,) and N°™ (u)=N,(m, n, +n,+1:m) with N,=N(u) (33f)
One notices that equation (30) is the k™ line of vector equality:
y*==N, (y)a+N,(u)b (339)

So, ARX model (30) is given the following form :

N(y*™)a e =Nu)b, ., < Ay"™ =Bu where A=N(a,,) and B=N(b,.)
(34a)
This gives, in the case without any lag (n, =0):
1 0 -+ v v .o 0] _bl 0 - v wee o O]
a 1 : b, b :
A =|an, o1 ‘| and B =|bn by : (34b)
0 a, a, : 0 by, b, - :
0 ... 0 ana ey 1 0 .- 0 bnIJ b2 bl

If a lag is present, a matrix of size n. x m full of zeros has to be inserted above the lines of
matrix B given by equation (34b).
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Equation (34a) can be be given the following form, that can be related to form (8f) of the
convolutive model, denoted y “°" here :

yARX A LBy oy At N2(f) N(h) U (35a,b)

Equating (39a) and (39b), for any value of the input u yields:
N(h) = C with C = Ait NZ(F) AL B (360)

This means that if the outputs of both models fit noiseless data in a perfect way, the first column
of matrix C, formed with the a and b coefficients of the ARX model, should be equal to the
vector composed of the sampled form (13) of the impulse response h(t) on the [O , tf]

interval, for the same time grid :

1

h=—
At

NZ (") N (@arge) N(D arge) 1 (36d)

where 1 is the vector of size mx1 that is full of ones. Since there is no way to get access to

instantaneous values of the impulse response in the general case, see section 4.2.1 above
and equation (12c), the vector of interval averages of the impulse response is deduced from
the parameters of the ARX thanks to the following equation :

fi = = NG N (@) N(B ) L (7)

Remark 15: Equation (37) (40) shows that there is an infinity of ARX models that yield the

same parameterized impulse response h . In fact, let us assume first that an ARX
model of order (n,, n,, N, ) has been identified for a calibration experiment, with

an estimated set of parameters { a, b } (see section 7.3 below) with a satisfactory

equation error residual (the root mean square of the e, 's in equation (30) and

has been validated in another experiment, see section 7.
Let us take next any vector d of size mx1 with a unit first coefficient d; =1, which

defines a lower triangular Toeplitz matrix D = N(d) . A set of two resulting vectors

{é‘,argez D &iarges 5',arge =D6Iarge } is defined, starting from the set
{ é,arge, 5|arge } defined in (32a,b). Extraction of alternate ARX parameter vectors

{é‘, 5'} based on these equations yield exactly the same estimated impulse

response vector h . In this transformation of ARX parameters, the n, order keeps
unchanged, while the n, and n, orders do not remain a priori the same.

In the present section, the derivation of the parameterized impulse function, starting from the
ARX parameters has been showed. The inverse procedure, the expression of the ARX
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parameters for a given impulse function is more difficult, because of their above non-unicity.
The interested resder can find such a problematic in reference [16].

7.3 Identification of the ARX parameters and their validation
7.3.1 Estimation of the ARX parameters for three given orders

The parameters a;and b; have to be estimated for a given order (n,, n,, n,). We need two
different input/output sets.

The first set is called the calibration set and the second one the validation set. The calibration
experiment is used to estimate a and b;. The matrix form (33g) of the model is written under

the form:

y =S, B with S; =[- Ny (y) N, ()] and B = m (38a)

Matrices N,(y) and N, (u) are defined in (33d) and (33f), while the dimensions of the
sensitivity matrix S; , which results from a concatenation of these matrices, is m x (n, +n,)
with a parameter vector of length (n, +ny).

This sensitivity matrix depends on both input and output, and can have a stochastic nature
because of possible presence of noise in these data, see Lectures L3 and L5. However the
philosophy of the ARX model is to get a model that fits them in a robust way, whatever their
nature, see section 7.3.2 below. So, in spite of the possible non linear nature of this estimation
problem, an ordinary least square estimator is used, based on the data of the calibration
experiment:

B = (S}, sﬂ)_ls; y = a=8@:n,) and b=8(n,+1:n,+n,) (38b)

The root mean square of the equation error is calculated next :
efMS = [Z = where e =y - y"®*(4,b) (38c)

The quality of the fit is characterized in terms of percentage :
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N _ AR5 B
z (YK Y (@, )) RS 1\ 2
, k=1 e
fit =100| 1- =100|1- (—J
m shape
ave |2 S
Z (yk -y (38d)
where yae = ii y, and gsShape _ i i (y _yave)2
m k m k
k=1 k=1
shape

The quantity s above is a statistical standard deviation characterizing the dispersion of the
output around their arithmetic average y®'®. It is equal to zero in case of a constant output.
So, it is related to the shape of the corresponding y versus t plot.

Of course, once the ARX parameters have been found with a satisfactory fit for the calibration
experiment, their validation requires comparisons of the output of the identified model with the
output of a second experiment with a different input.

7.3.2 Interest of ARX models and Choice of the optimal order of an ARX model and its
validation

In experimental identification, or model reduction, the interest of using an ARX model results
from its parsimony: it uses a few tenth of parameters at most, even in the non SISO cases
where several outputs and/or inputs are present (MISO, SIMO and MIMO) with respect to a
convolutive structure based on the identification of a whole function, the impulse response.
Estimation of its parameters is fast and easy (linear least squares) and generally provides a
very high percentage of fit, see (41d). A useful corresponding reference is [17].

However, there is no way to find the optimal orders (n,, n,, n,), that is the corresponding point

in 0% ina single shot. It requires the implementation of multiple estimations for the same
input/output data: so a set P of possible candidates has to be found , with a variation of each
order.

For example, one can test 11 integer values for n, in the [0,10] interval, and similarly the
same number of values for n, and n, in the same interval, which gives a set P of 113 different

estimates. Once this set obtained, the following version of Akaike’s Information criterium,
valid for small samples, that is for small sizes of P, can be minimized. In the SISO case, this
criterion is:

)+ 2m(n,+n, +1)
m-n, —n,

AIC,= m In(%”y—yARx (n, .4, 6)H2j+m (In(27z) + 1 (39)

This criterion is based on a compromise, between quality of fit and the complexity of the model,
that is its order. It penalizes models with a high number of parameters that tend to over fit, that
is to mimic the noise in the data. So it can be regarded as a way to regularize the estimation
of the ARX parametres, together as its structure (the level of n, ). The interested reader can
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refer to [18], especially for finding applications in cases of multiple inputs or outputs. In a similar
way, a modified version of the ARX model, designed for an IHTC problem can be found in [19]

Remark 16: Akaike’s information criterion minimizes the Kullback-Leidler information, that is
the distance between a model with a given structure and a given number of
parameters and the true unknown model that can explain the data. This
minimization is made using the maximum likelihood estimator (MLE) of the
parameters, here the a and b coefficients, as well as the standard deviation o
of the equation errors vector e, see (38c), whose coefficients are thet errors e,
at different times, defined in (30). This stochastic vector is supposed to be
independent, identically distributed and of zero expectancy here. Here, in the

SISO case, the estimated value of their standard deviation is 6=e""°, see
(38c), the number of MLE estimated parameters being equati to n, + n, + 1.

Appendix A - Laplace transforms and thermal quadrupoles: a reminder

We assume that 1D heat transfer occurs in a medium where temperature @ is function of the
location x and of time t and are interested by a slice of this medium, corresponding to interval
[Xi, » Xout 1, Of thickness Ax. This slice, see figure A1, is composed of a homogeneous
material, whose thermal conductivity A, density pand specific heat ¢ are supposed to be

constant. There is also no volumetric heat source in the slice and its initial temperature is
supposed to be zero. Under these conditions, the heat equation, as well as the initial conditions
are:

6’0 100
ot for X, <X <Xy, and t>0 (A1)
=0 at t=0 for X,<X<Xy, (A2)

The local heat flux ¢ (W/m?) and the rate of heat flow @ (W), for the area S (m?) of a
plane surface normal to the x axis, are introduced:

¢(x,t)=-/12—i and @=S¢ (A3)

Let us remark that the sign of ¢ and of @ depends on the orientation chosen for the x
axis. The Laplace transforms of temperature and flux are introduced:
t
7 (X, p) = j w(x,t) exp (-pt) dt for y=0 or ¢ or @ (A4)
0
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Figure A1 — 1D heat transfer

Under these conditions, the temperature-heat flux vectors in the Laplace domain at the two
ends of the considered interval verify the following matrix/vector equation :

{5 (xm,m} _ {A(Ax,p) B(Ax, p)} F (xom,m} (A5a)
D (Xn,P)|  LC(AXp) D(AX,P)| [P (Xou:P)
with:
L1 .
A =D = cosh(Ax,/p/a) ; B = PN sinh(Ax/p/a) (ASb)
C=A1S,pla sinh(AxM) ;a=Alpc and AX = X, =X, =0

Equations (A5a) and (A15b) are strictly equivalent to system (A1) — (A2).

Let us note that quadrupolar equation (A5a) is valid whatever the boundary conditions in

X, and X, , see [1] for more details.

We will know set these 2 boundary conditions, for the specific case of the slab shown in figure
A2, where x;,=0 and x;,=e, and for the surface heat source P (t) (W) absorbed by the front

face (x;,=0).
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Figure A2 — Heated slab on its front face, with linear heat losses on both faces

The boundary conditions are:

@:-/152—9=P(t)- hS(0-6,) at x=0fort>0 (A6a)
X
00

0 =- 282 ~n,S(0- ) at x=0 fort >0 (A6b)
X

Let us note that, contrary to what seems to mean figure 2, the sign of q(t) does not depend on

the orientation of the x axis. Since it is a source, the thermodynamics convention is applied: if
heat is added to the front face of the system, which is the case here, q(t)is positive, while

g(t) is negative if heat is removed from it (case of a refrigerated front face).

So, equations (A1) and (A2) reduce, if only the front and rear face are observed, to the
quadrupolar equation, where the p argument has been omitted in the different functions:

% _ A, B, % with v, =w(x,p) fory=0 or®@and x=0o0re (A7)
D, C. D K. =K(e,p) forK =A,B,CorD

e e e

In the same way, boundary conditions (A6a) and (A6b) are written as:

_ R
%| - % | where ko =h,S (A8a)
Pl |k 1|4
ot o
{’E}:{ M‘ﬂ where k,=h, S (A8b)
&, |k 1]|0

Equations (A7), (A8a) and (A8b) reduce to one single equation, by elimination of the
temperature/flux vectors at the two faces of the slab:
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0T e

The coefficients of the product matrix are:

A=A +K,B, : B =B, A10)
C; =C, +kyA, + kD, + kok, B, ; D; =D, + kB,
Let us note that no boundary condition was present in equation (A7), which links the vectors
of temperature and of rate of heat flow, while both boundary conditions are taken into account
in equation (A9), that relates the temperature/surface heat source vectors, where the surface
heat source P (t) is present at the front face, with a corresponding zero surface heat source at

the rear face.

The front face flux can be considered as a “pseudo source”, with the following responses in
the Laplace domain, using equations (2a), (2b) and (2c), in the main part of this text:

g,=27, ®, with Z,=Z7, /W’ = A, /(C,+k,D,) (At1a)

@, with z, =z, /wy =1/(C,+k,D,) (A11b)

e

0.

I
N

e

The outputs & and @ of the model can also be calculated at any depth x in the slab, see
figure 1, using (2c¢):

_ _ — o k. B
0=z, P with Z _ Aex T Ke Be (Al12a)

e anlle 0= 1y e e et

D| D ke 1 _ —

@] Lo Dexlle 0 & =WeP withw? = Zex* ke Do (a12h)
C;

where A,_,, B._,, C,_, and D,_,are given by equation (A5b) in Appendix 1, replacing Ax

by e—x.

Output @ is expressed in terms of the two above pseudo sources, using equations (2a) and
(2b) in the main part of the text:

G-V, g with W= e +A‘:e Bex (A13a)
g-7 @ with z,="ex" K Boy (A13b)

X C. +k, D,
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In the same way, output @ is expressed in terms of the temperature pseudo source, using
equation (2a) in the main part of the text:

C

- = _ _ x + Ko Doz
Q=Y 6, with vy =—"—F—>2="2X

Aq

(A13c)

Appendix B- Inversion of the Laplace transform

Inversion of an analytically known Laplace transform i (p), in order to retrieve its original v (t)

, is an ill-posed problem. This original can be constructed for continuous values of the time
variable t in 4 cases:

- for very specific expressions of 7 (p) given in tables of analytical direct and inverse

Laplace transforms;
- use of the usual properties of this transform (derivative, integral, translated function,
shift in time, change of scale, long or small times approximation)

- when /(p) is a rational function of p, where developments in terms of its zeros and

poles can be constructed;
- using the Bromwich’s (also called Mellin’s) contour integral in the complex plane.

In practice, it is more convenient to use a numerical inversion algorithm. Several are available,
see Chapter 9in [1] and [2]:

- Gaver Stehfest’s algorithm [3, 4, 5], which is very simple to implement, with possible
singularities in t = 0 but not convenient for non monotoneous functions or periodic
functions over the [0, +] interval,

- Inversion based on Bromwich integral, using either a classical Fourier transform, or
an inverse fast Fourier transform, see Appendix 9.2 in [1] and Hsu and Dranoff [6],

In this second class of inversion methods, de Hoog’s algorithm [7], which is implemented under
the “Invlap” name as a script in Matlab®, provides an acceleration of the convergence, while
den Iseger’s algorithm [2, 8] provides an improved quadrature of the Bromwich integral.

If none of the above algorithms gives satisfactory results, an hybrid technique can be
implemented, using a function f (p) whose inverse transform f (t) is known analytically or

numerically. If the inverse Laplace transform g(t) of the product g (p) =f (p) ¥ (p) can be
reached numerically, the parameterized form of the corresponding convolution product is:

g=MH¥Y = ¥=(M(f)) g (B1)

So, this technique consists in transforming the Laplace inversion into a deconvolution problem.

Appendix C — The Singular Value Decomposition of a matrix and the SVD version of the
ordinary least square estimator
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Any rectangular matrix (called K here) with real or complex coefficients and of dimensions (m,
n) with m > n (SVD also exists in the case m < n, but it won't be dealt with here), can be

written under the form :

K =UW V'thatis K = U A (C1)

where superscript t stands for the conjugate transpose of the corresponding matrix. If the
coefficients of K are real, it is simply its transpose.

This expression is sometimes called "thin" or “economy size” SVD and involves

- U, a unitary matrix (orthogonal if K is real) of dimensions (m, n) : its column vectors (the left
singular vectors of K) have a unit norm and are orthogonal by pairs : U'U = l,, where | is
the identity matrix of dimension n. Its columns are composed of the first n eigenvectors Uk,
ordered according to decreasing values of the eigenvalues of matrix K K. Let us note that,

in the general case, UU" =1 .

- V, a square unitary matrix (orthogonal if K is real) of dimensions (n, n), : VV'=V' =1_.
Its column vectors (the right singular vectors of K), are the n eigenvectors Vi, ordered
according to decreasing eigenvalues, of matrix K 'K ;

- W, a square diagonal matrix of dimensions (n x n), that contains the n so-called singular
values of matrix K, ordered according to decreasing values: w, 2w, >--->2W_ . The

singular values of matrix K are defined as the square roots of the eigenvalues of matrix K 'K
. If matrix K is square and symmetric, its eigenvalues and singular values are the same.

Another SVD form called "Full Singular Value Decomposition" is available for matrix K. In this
equivalent definition, both matrices U and W are changed: the matrix replacing U is now square

(size m x m) and the matrix replacing W is now diagonal but non square (size m x n). In the
present case where m > n, this can be written:

(m-n)xn

W
K=U,W,V"' with U, =[U U comp ]; W, ={0 } and dim (U_,,,) =m x (m - n)

(C2a)
or:
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_ . - [wy 0 |
0 w
K = U U comp o .. 0“ V! (C2b)
- - - - 10 0 |

Matrix U, is composed of the (m - n) left singular column vectors not present in U. So, the
concanated matrix U, verifies now:

UOtUO :UOUOt =Uu' +UcompUctomp = Im (C3)

This singular value decomposition (C1) can be implemented for any matrix K, with real or
complex value coefficients, for m > n.

We assume now that the model y, (x) = S xis linear and that all the parameters gathered
in the parameter vector X have the same unit. We use the SVD of the sensitivity matrix S,
that is we write the generic equation (C1) for K =S which yields S = U W V '. Substitution
of this expression in the OLS estimate equation, see Lecture 3, gives:

%o =(S's)'sly =vw tu'y (C4)

This identity is valid only if matrix S is of full rank, which means that its smaller singular value
w, (S) should be strictly positive. As a consequence the covariance matrix can be written the
following way:

cov (X =02V W32Vt C5
OoLS &

This shows that the smallest singular values present in matrix W 2 will bring a dominant
contribution to the diagonal coefficients of cov(x) , that is the variances of the different

parameters.
Appendix D — Truncated SVD and Tikhonov regularization of zero order
D.1 TSVD regularization

In any linear inverse input problem, the OLS solution, see equation (C4) in Appendix C,
minimizes the following least square criterion:

J(x)=]y-sx|*=(y-Sx)" (y-Sx) (D1)

Ideally, if no noise is present in the data y , the best option is to choose a parameterization
based on the largest possible number of parameters n, that is n equal to the number of
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measurements m. However, because of the presence of noise, the larger n, the larger the
condition number of the inversion and the largest the standard deviations of the estimated
parameters because of the smallest singular value w, (S).

So, one of the solution is to replace, in the SVD expression of the OLS minimum, the inverse
of the matrix W of the singular values by a its truncated inverse W_", see equation (C4) in
Appendix C,:

1/ w,
1/ w, 0
W, t= 1/ w, (D2)
0 0
- O_
So, the regularized TSVD estimate is:
XS = vw lU'y (D3)

Let us note that W, cannot be calculated since the n—« smallest singular values of S,

W, .1, W -, W,_,, W,,, have been given an infinite level.

a+1 W21 77

The TSVD solution (C3) can be rewritten using the left and right singular column vectors U,
and V,:

1/ w, 0 U;
) 1/ w u! !
XIS _ NV, o V] 2 2 y:ZW_(Uf(y)Vk (D4)
k=1 K
0 1w, ||UL

The discrepancy principle can be adopted for the choice of the optimal value for « :

TSVD

J(X ( -~ TSVD 1Y

)y<mo? and J(X]3P) >mo? (D5)
D.2 Tikhonov regularization of zero order

Another popular method of regalurization is based on a penalization of the OLS sum (A1) by
an additive term that would prevent and explosion of the standard deviations of the different

coefficients of x . Tikhonov regularization of zero order consists in minimizing the following
criterion:
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J,00=]y-Sx|*+u|x]|*=(y-Sx) (y-Sx)+ux"x (D6)
The solution is explicit:

. -1
i;'k°=(5t3+y|n) Sty (D7)

This can be written using the SVD decomposition of S :

(VW2Vt s pl, ) RTO=vw Uty (D8)

Using the fact that V V' = |, the preceding equation can be simplified:

n

Comparison of OLS (equation (C4) in Appendix (C), TSVD (D4) and Tikhonov (D9) estimates
show that both OLS and regularized solutions can be written under the common form:

X 109 = Zf LUty)vi (D10)

where coefficients f, are called “filter factors, see [13] and are defined by:
e f,=1for k=1 to n<m without any regularization (Ordinary Least Squares)

e fi=1fork=1to a<n<m andf,=0 fork=a+1ton<m for TSVD
regularization

Wy
2
W + i

o f = for k =1to n <m for Tikhonov regularization of zero order

Appendix E — Regularization using future time steps

We recall here one of the regularization technique, the function specification method, also
called method of future time steps (FTS) [9], which is not a whole domain, but a sequential
regularization technique.

So, equation (7€) in section 3.1, that is Duhamel’s form of the convolution product model, that
uses the variations of the step response on a time grid, as well as the interval averages of the
input, is rewritten :
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Y =Y () =

M~

AH 4 U (E1)
j=1

A change in the notation introduce in equation (7d), is made here :

| = DH, = AH,

j+1

This means that the variation of the step response at time t;, is not considered in the past time

step, that is in interval]tj,l, tj], but in the future time step, that is in the ]tj , tj+1] interval.
This means that equation (E1) becomes, for the k™ output :

k
Yi ¥ Y DH, j u; (E2)
j=1

In equation (E2), the tilde symbol has been removed for the input over the th_l, tj] interval,

in order to simplify the notation. One suppose next that the previous inputs have already been
estimated, with values equal to l]j , for j=1tok-1 and that the current estimate u,is

looked for.

One assumes here, on a provisional basis, that the following (r + 1) components u, to Uy, .4
are equal to a common value q:

Ug =Ugg =Ugp = =Ug, =Q (E3)

Equation (E2), is written then, for the (r +1) corresponding times:

k k-1
Y = Z DH,_j uj ~ z DH, _; l’jj +DHy g = yk|q=0 +DH, ¢
i=1 j=1
k+1 k-1
Y = Z DHia-j Uy = Z Hiaaj Uj + (DHg + DHy) g =y, |, o + (DHg + DHy) g
i=1 j=1
(E4)
K+r k-1
Yisr = Z DHy.roj Uj =~ Z DHy,,_j U; + (DHy + DH +---+DH, ) q
i=1 j=1

= Yiar |q=0+ (DH, + DH,+---+DH, ) q

Here the notation yj‘q:O for j =k to k +r, designates temperature at time

t=t ,with j > k corresponding to a relaxation of the temperature field reached at time
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t =t ,, that is the time at which the last non zero input u,_, ends. So, it is a relaxation
temperature which is calculated using the already estimated (k-1) input levels
u; ,for j=1to k -1.

These equations can be put under the following vector/matrix form:

yfuture _ yrelax +q S with yrelax _ Hrelax L'jpast (E5a,b)
with
T 4 A A ~ T
yfuture :[ Ve Yiar ka] - (jPast :[ G, U, - Uk—l] (E5c,d)
and
S, DH, DH,, DH,., - DH;
< s:2 _ DH, erHl L el _ D:Hk DH:k—l DHZ (E5e,f)
Sra DH, +DH, +---DH, Dyira DHyyrp - DHiy

The dimensions of matrix H™® are (r +1) x (k —1). Let us note that this matrix is just a sub
matrix of Toeplitz matrix M(H).

Parameter q, and as a consequence the new value u, of the input is then estimated in the

exp

ordinary least square sense, using the measured values of y v .

A A A 1 r+l
G =G =(STS) ST (Yohe - v"™™) = — > S (84— vie, (E6)

§'st

i1

Once U, has been calculated, the same procedure is repeated for calculating G, , with a new

common parameter q for future inputs u, ., to u,.,,;, and so on.

i+1°

In this technique, the regularization hyperparameter is the number r of future time steps. If r
is equal to one, the future time step estimate is equal to Ug, g -

Appendix F — Construction of models for 2 points VTS and IHCP

The following quadrupolar relationship is written, between points 0 and x; and between 0 and
Xyt
G |_[A Bl _[A Bl (F1)
@ C D2 C, D]
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where the 4 coefficients of each 2 x 2 matrix are based on the corresponding thickness, see
equations (A5a) and (A5b) in Appendix A, that is for example :

A =cosh (ax) fori=10or2 and a=.pl/a (F2)

Elimination of @, between the two scalar equations resulting from the equality between the
two matrix products of (F1) yields:

- A

=20 - 1 0, with A, =cosh (a Ax) ; B, = 1 sinh (a DAX) ; AX = X, —X, (F3)
B, * B, AaS

Substitution of this expression for @; into the first and into the second lines of the first matrix
equation (F1) yields:

Gy = =26, — L0, Fda

N (Faa)

B -t2g -y, (Fab)
BA BA

Inversion of the system of equations (A4a) and (A4b) yields:

h=A G —B @, (F5a)
6, = A, 6, - B, @, (F5b)

After elimination of @, between (A5a) and (A5b), one gets the following result, which will be
used as the model of a two points virtual temperature sensor of the front face temperature:

- B
Qs =Wyrs 6 With &5 =6 - B_l 6, and Wyrg= B_A (F6a)
2 2

Elimination of 9_0 between the same equations lead to the model for a two points estimation of
the fronf face rate of heat flow:

_ _ — i — — - B
Ars = Znce Po With Oep = 6 - % 0, and Zycp = EA (F6Db)
2

Appendix G - Interest of the Singular Value Decomposition in linear parameter
estimation
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If all the n parameters in a parameter vector X are looked for, for a linear model y ., (X) = S x
, Wwhere m noised measurements y =S X + &€ are available, and if noise ¢ is independent

and identically distributed (i.i.d.), that is cov(g) = & |, its Ordinary Least Square (OLS)
estimator can be written (see Lecture 3 of this Metti school):

%os = (S'S)'sly with E(5)=0  and cov(Xgs) =02 (S'S)” (G1)

Of course, in order for the inverse of the information matrix S'S to exist, matrix S must not

be singular, which means that its n sensitivity column vectors should form a free system of
vectors (see lecture L5 in this series): the rank of S should be equal to n.

The potential difficulty in the estimation of X may stem from the possible ill-conditioning of the
square information matrix S'S whose inversion makes the standard deviations of its different
parameters >2j become very large with respect to their exact value. So, a normalized criterion
can be constructed in order to assess the quality of the estimation of the n parameters.

We assume here that all the coefficients of X have the same unit as all the coefficients of y .
This is the case for input estimation problems where y is for example the vector of the sampled
measured temperatures at mtimes t; and X the parameterized heat source x(t) using a basis
composed of n functions g; (t):

X(t)zX aram(t): X; g(t) = X aram(ti)zg(ti) X
p ; i 9i P (G2)
with gz[g(ti) g, (t) - gn(ti)] and x =[X1 Xz 0 Xy ]t

In this parameterization a column-vector X composed of n coefficients has replaced a function
X (t) of infinite continuous dimensions.

So, it is now possible to write the thin SVD decomposition of S, which uses the notion of
Euclidian norm of different true vectors, see equation (C1) in Appendix C:

S=UWV" (G3)

It is now possible to calculate the amplification coefficient of the relative error k; :

exact

I

= ith
[l [Yoo )]

=X - X exact (G4)

X

Using the properties of matrices U and V described in Appendix C, one can show:
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||ex||=Hv W’lUté:HSHV W*lut“ €]
[V o (o )| =18 x| < JUW V[ x |

}:kr @<|vwrut|luwv=|s[s] (G5)

One can recognize in the right-hand term of the last inequality (G5) the product of the norms
of two matrices. The second matrix is simply the SVD form of the reduced sensitivity matrix

S’ while the first one is just the pseudo inverse of S’ , which is noted S* here.

Let us remind that the norm of any matrix K (which has not to be square) is defined by:

1K |2 :"|\Z/||Tli(1(thtK z)=w2(K) (G6)

where w, (K) is the largest singular value of K. This singular value is simply the square root

of the largest (positive) eigenvalue of the reduced information matrix 1,(S'S). One can show
that:

1
w, (S)

S| =w.(S) and “s

=w,(S7) = (G7)

So, it can be shown, using (G4), (G5) and (G7) that the maximum value of the amplification
coefficient of the relative error k,, that is the criterion that assesses the ill-posed character of
the OLS parameter estimation problem is equal to the condition number, noted cond (.) here,
of the reduced sensitivity matrix:

K, (£) < cond(S) = VV\\I/l—((SS)) (G8)

So, this condition number, defined here with the Euclidian L, norm, is the pertinent criterion
that can be used to measure the degree of ill-posedness of a linear parameter estimation
problem, whatever the value of the noise level (for an i.i.d. noise). If the different parameters
defining the parameter vector have not the same physical unit, the reduced sensitivity matrix

S* , see Lecture L3, has to replace S in the definition of the condition number. The condition

number of S depends on the nominal values of the parameters and can vary strongly,
depending on the value chosen for normalizing the parameters, even if the problem is linear.
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Tutorial 8: Heat Flux estimation using deconvolution and
regularization procedure

J-L. Gardarein?, J-L. Battaglia®, J. Gaspar®

AIUSTI UMR 7343, Aix-Marseille University, Marseille Cedex13, France
b|2M UMR , Bordeaux University,

Abstract: This tutorial is especially designed to the beginners in inverse heat conduction techniques.
An estimation of a surface heat flux on a material will be done using embedded thermocouples. Through
an experimental example, we propose to detail the heat flux estimation procedure associating
deconvolution and regularization method (Tikhonov). After a brief presentation of the experimental
context, the inversion procedure will be applied using an experimental signal generated during the
tutorial. The codes used will be accessible to the participants.

1. Introduction

In many industrial applications or large research facilities, heat flux and temperature control
are essential for a better understanding of the process and for the safety of the facilities. There
are different possible temperature measurements: at the surface or using embedded sensors. The
heat fluxes are generally deduced from these temperatures. On some setups, it is possible to
measure temperature within the region of interest. But this is not always the case. In this
workshop, we present a method that allows the estimation of heat flux and temperature using
embedded measurements.

We will focus on heat flux estimation based on embedded measurements using thermocouples.
It is clear that a very small change in the measurement will lead to a large variation of the heat
flux estimated. In other words, measurement errors are amplified and could make the results
unusable. A solution to such an issue is to use a specific regularization method that would allow
a better reliability of the solution. The best-known techniques include Thikonov's penalization
regularization [Thikonov, 1977], and spectrum truncature regularization (SVD) [Hansen,
1993]. To solve the inverse problems in heat conduction, many numerical techniques have been
developed using different approaches, some analytical or semi-analytical, others based on
classical numerical approximations, such as finite differences or finite elements. In this tutorial,
a method based on the inversion of the Duhamel integral is used [Osizik, 1980], [Beck, 1985].

This method extends the use of analytical solutions and solves multidimensional problems. The
adjoint state method well described in [Jarny, 1990] can also be used to solve boundary
condition estimation problems in complex geometries using the direct problem as an
observation. However, the iteration process implementing a direct finite element calculation
does not make it possible to perform a fast calculation.

In a first part, a very simple direct problem is presented in order to explain the difference
between a direct and an inverse procedure. Then, the convolution method allows writing a link
between the temperature and the heat flux. The next section deals with the transfer function of
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the experimental devices and the different ways to estimate them. Finally, the inversion process
and the regularization method are described.

2. Direct Problem, convolution
2.1 Presentation of a simple direct problem

Considering a 1D material with constant thermal properties (1 = 240W/m.K, p=1800kg/m?,
C,=780 J/kg.K, €=0.04m) submitted to a heat flux step of 1W/m? between 5 and 10 seconds,
we can compute the temperature at different depth values within the material (z=0, 1, 2, 3, 4
cm) with a direct calculation (numerical simulations, thermal quadrupoles [Maillet et al., 2000],
analytical solution,...). We assume that the initial temperature distribution in the material (at t
= 0) is uniform and equal to To.

T 10"

1 5 /\
X / \ 2= 0,04 S
£ 08 & 1 / g z
%os A0 Gy 2 ,/"/ >
2 £ ’ /
T o4 i EO.Sr / §
02 <—eb ﬁ &
o Tempsens //
0 5 10 15 20 0 | £ i . Tempsens
0 5 10 15 20
Figure 1. Heat flux applied to the surface of Figure 2. Temperature rise at
material with thickness e. different thickness: z=0, z=0.01m,

z=0.02m, z=0.03m, z=0.04m.

Since the material is insulated, one can note that all the temperature rise is the same for all the
sensors location from 15 sec. and is equal to:

DT, =T, -T, = — >x1

=== =8,903.10°K
sl " 0" C 6" 1800 % 780 0.04 @

E is the energy per unit volume absorbed within the bulk in J/m?.

A noise is added to the calculated values in order to simulate real temperature measurements
as:

‘ Y=Yum+ ¢ ’(2)‘

Y is the noised signal of Ynum that is the exact temperature given by (2).

¢ is a Gaussian noise with zero mean and constant 10% standard deviation. Using the direct
model leads to the temperature field when the thermal properties, the geometry and the heat
flux are well known. Let us note however that, in the case of a complex geometry, a finite
element method is generally used to obtain a field of temperature.
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In this tutorial, we deal with the case when the heat flux is unknown and we have only one or
several temperature measurement, not necessarily located on the region of interest. In this case,
how can we obtain the heat flux on a boundary of the component? In the particular case
presented on the Figure 1 and 2, the problem could be: how to estimate the heat flux deposited
at the surface of the material using only the temperature measurement depending on time at
1cm from the surface?

2.2 Convolution procedure description [Carslaw-Jaeger, 1959]

The component is modelled by a linear system subjected to a prescribed heat flux Q(z=0,t)
having for effect the temperature T(z,t). Using the linear system, the temperature T(z,t) can be
written as the convolution of Q(z=0,t) with the impulse response h(z,t) of the system, (i.e. the
tile temperature response after a Dirac function of power applied to the surface). The
temperature of the material is assumed to be uniform at t = 0.

(1) h(f)¥ Impulse
Q(t) — linear system |— T(t) |\response ‘
Input output ¢ | ‘

Figure 3. Linear System. Figure 4. Impulse response of the bulk.

For the temperature T at the time t, the depth z:

T(z1)=T(zt=0)+Q(z=0,0) Ah(z 1) =T(z t = 0) + 0: Q(z=0,0)h(z t - t)dt 3)

The impulse response h(z,t) of the system is the first time derivative of its step response u(zt).
So, we approximate (3) by finite differences which leads to the expression of the temperature
at each time step F in matrix form: where X is a triangular lower square matrix (of order F)
assembled with the components:

DT(z1) | [ Du(z1) 0 0 0 O 0 [ Q(z=0,1) |
DT(z2) Du(z2) Du(zl) O O Q(z=0,2)
: Du(z,3) Du(z2) . . . 0 :
) ST A B “)
_DT(.z, F)| |Du(zF) Du(zF-1) O DO | .' Du(.z,l)_ | Q(z : 0,F)]

with
Du(z,F)=u(z,F)-u(z F -1

Finally, the heating vector AT is the multiplication of the X matrix with the heat flux vector Q:

DT=X.0 ]
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Since the X matrix is build with the transfer function of the component, this one has to be
computed or measured.

3. Determining the transfer function

In this part, several ways to obtain the transfer function of the components are presented. For
the case presented previously, an analytical transfer function can be computed using the thermal
quadrupoles modelling [Maillet et al., 2000] because the geometry is perfectly known and
relatively simple. In the case of a complex geometry, multidimensional, multi-materials, a
numerical simulation can be used to compute the transfer function of the experimental device.
An example is presented in subsection 3.2. Then, in a case of an experimental device
complicated to model with a good level of accuracy (the thermal properties or the dimensions
are note perfectly known, old experimental without map), the transfer function can be estimated
experimentally directly on the device, using an appropriate methodology presented on the
subsection 3.3.

3.1 Analytical transfer function

For a simple case, the thermal transfer function of an experimental device can be computed
with the thermal quadrupoles method [Maillet et al., 2000]. With this method, the temperature
and the heat flux at the surface of the material can be written respect to the heat flux and the
temperature at the back face of the material, the thermal properties and the dimensions of the
sample, in the Laplace space. Each layer of the material is represented with a 2x2 matrix
containing the thermal properties and the thickness of the layer. For the particular case
presented in the subsection 2.1, the transfer is mono dimensional and we want to compute the
transfer function of the material at the thickness z (corresponding to a TC location) after a step
of heat flux of 1 W/m? imposed at z=0 (surface of the component). To obtain the step response
at the thermocouple location z=e1, the material of width e is modelled by a bi-layer material of
respectively e1 and ez width:

[gin(o, p)] _ [A1 gj lﬁel(el,p)l

in(ol p) B Cl ¢el (81' p)
(6)
9e1(31'p)l _ [Az Bz] [eout(e' p)
¢e1 (81, p) CZ DZ d)out(e' p)
With  A; = D; = cosh(o.e;)
B; = %.sinh (0.€)

C; = Ao.sinh (0.¢;) and o = \/g

Since the material is supposed to be insulated in z=e, ¢,,:(e,p) = 0. Furthermore, the heat
flux imposed at z=0 is a Heaviside function equal to 1W/m?, in the Laplace space, this function
becomes: ¢,(0,p) = 1/p.
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With theses assumptions, it is now possible to write in Laplace transform of the step response
at z=e:

A, 1
C14, +A1C ' p

631 (81, p) = (7)

A numerical inverse Laplace transform [DeHoog, 1982] allows computing this step response
in the time domain.

3.2 Transfer function computation with finite element method

When the step response can’t be computed with this kind of simple modelling, it is also possible
to compute it with a finite element method. In the next case, the experimental device is a
pervaporation cell made of PVC matter [Toudji, 2017] with a low thermal conductivity of about
0.16 W/m.K to limit heat exchanges with the external environment and with the liquid. The
liquid is filled in a cylindrical tank above the pervaporative membrane surface. Several
thermocouples are located in the fluid. The goal of this experimental device is to estimate the
heat flux consumed on the membrane in z=0m, using the thermocouples data and the
deconvolution method. As in the precedent case, the first problem is the identification of device
transfer function. Since, the diffusive time of the ethanol is very important, in a first
approximation, it is possible to use an analytical solution assuming the ethanol as a semi-infinite
medium. In this case, the step response can be written as follow:

T(zt) = T(z,0) = 2.%\/& ierfe( \/%) ®)

T(z,t) is the field of temperature depending on time and on the location z
T(z,0) is the initial temperature of the device

Q is the heat flux density (W/m?), equal to 1W/m? for a step response.

/. 1s the thermal conductivity (W/mK)

a is the thermal diffusivity (m?/s)

t is the time (s)

The semi-infinite approximation can be useful for a short experience but this kind of
experiments are interesting at long time, typically 2000s. It was essential to compute a step
response taking into account the complex geometry of the experimental device. This
computation has been done with StarCCM+. The mesh and the results are presented on the
following figures for a negative heat flux of -200W/m?. Indeed, a first computation has been
done with a value of heat flux density in order to see the order of magnitude of the cooling at
the thermocouples locations.
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* Temperature (C)
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3

Figure 5. Mesh of the pervaporation Figure 6. Temperature field obtained with a
experimental cell negative heat flux of 200W/m?
In a second time, the step responses have been computed at three TC locations with a heat flux
of 1W/m? imposed at z=0m. The computed step response are presented on the following figure:

Comparaison des modeles pour 1’éthanol

0.08 ' ' ' ! ! ! ! ! !
+ TC Imm SemiClnfini |
—TC 1mm StarCCM+ | P
—TC8.6mm StarCCM+ | SR
+ TC 16.2mm Semil Infini : Pt 3
T T T : : * : : -
: + ;
: : : P - :
: : : : +i : : : :
= I : :
£ + : :
e 0.04+ z b J
= s : +
E : +
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C : : : : : : + ! :
: : : : : e :
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P+ :
: : : : +: : : : o,
: : : - : : : Le
; : . : : I :
+ + :
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Figure 7. Step response function computed at three TC locations with numerical
simulations and semi-infinite approximation

One can see on this figure the comparison for each thermocouple of the numerical simulation

and the semi-analytical one. We can see that the semi-infinite solution can be used until 500s,
for a longer experiment, the numerical responses are essential.

3.3 Transfer function identification
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As said previously, the direct model is generally known, i.e., the thermal properties of the
medium as well as the location of the sensors are accurately known. However, many practical
configurations do not enter this ideal world and solving the inverse problem with great
uncertainty on the direct one would lead to very inaccurate results. Therefore, as proposed in
lecture L7, the transfer function that links the heat flux to the temperature at the sensors can be
identified. In order to make a comprehensive application of the proposed methods in system
identification, only one input (heat flux) and output (temperature measurement) will be
considered.

The first approach, know as the non-parametric one, will lead to estimate the transfer function
from measured values of the heat flux and the sensor temperature within an experimental
configuration where the heat flux can be monitored. The methods that will be used are the
spectral technique based on the Welch algorithm.

The second approach will consist in identifying the parameters involved within the expression
of the transfer function. The first step will use the ARX technique that is faster but unfortunately
biased since it is based on the minimization of the prediction error. The second method is based
on the OE (output error) minimization technique that is a bit longer but unbiased.

4. Deconvolution and regularization

After the estimation of the transfer function of the experimental device studied, the matrix X
can be built and the direct problem presented on the equation (5) can be easily solved. It is just
a multiplication of the matrix X (built with the step response computed) with the heat flux
vector. When the temperature vector is measured, the heat flux vector can be estimated using a
specific methodology. The deconvolution procedure consists in reversing Eq.(5), i.e. expressing
surface heat fluxes with measured surface heating as:

Q=X"DT 9)

In the case of a surface temperature deconvolution (z = Om), the problem is inverse but stable
and matrix X inversion doesn’t cause any problem. In the case of the deconvolution of the
temperature measured with an embedded thermocouple (z=e); the inverse problem is now
unstable. A low variation of the measurement induces a big variation of the estimated heat flux.
Indeed, the matrix X is ill conditioned. Clearly, it means that the matrix X is difficult to inverse
because of very low terms in the diagonal. Consequently, a regularization procedure is needed
to stabilize the solution.

4.1 The Thikonov regularization

The solution vector Q, is very sensitive to measurement errors contained in vector AT. In order
to obtain a stable solution, we use a regularization procedure. For example, we can use the
Thikonov regularization operator. The regularized solution becomes:

Quey =(X'X +gR'R)* X' DT (10)

- @reg is the regularized solution (an approximation of Q)
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- yis the regularization parameter
- R is the regularization operator depending on the type of information that we want to obtain.

In the specific case of heat flux estimation, we want a solution with a minimal norm of the
solution (O order) Qreg, so we will take R = Id. An optimal value of the regularization

parameter can be found using the “L curve” technique [Hansen, 1993]. This type of
representation allows choosing the best compromise - which is located at the bending point of

the ‘L-curve’ - between a stable solution, with a low value of ||R.Q,., || and an accurate
solution, with low residuals || X. Qre, —A T ||.

4.2 Application to the case presented in the section 2.1
For lower values of y (Figure 8), the solution is unstable with low residuals, on the other hand,

for strong values of y (Figure 9), the solution is stable but moves away from the exact solution.
The Figure 10 shows the heat flux estimated with the best compromise for y.

15 5 —
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Figure 8. Heat flux estimation with a low y Figure 9. Heat flux estimation with a
strong .

On Figure 11 is presented an example of L curve with the best y for heat flux estimation with
the embedded measurement. One can note that the value y depends on the level of the noise,
the temporal resolution and the depth of the measurement.
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Figure 10. Heat flux estimation with the best | Figure 11. L curve and best y in the case of an
compromise of y. embedded thermocouple located at 3cm of the
surface.

Flux (W/m2)

4.3 Application to the case presented on section 3.2

In this case, three similar experiments have been performed in laboratory with ethanol. The heat
fluxes have been estimated using the step response presented on Figure 7 and the deconvolution
and regularization procedure. On Figure 12, the heat fluxes have been estimated with the
thermocouple located at 1mm from the surface for three different experiments. On Figure 13,
this is the same experiment but the heat fluxes are estimated with the three thermocouples
(z=1mm, z=8.6mm and z=16.2mm). In the two cases, the values of the heat fluxes are similar.
First, one can note that the experiment is reproducible. On Figure 13, one can see that the heat
flux estimated with the TC located at 8.6mm and 16.2mm are very smooth. This is because the
depth of the thermocouple needs a higher value of the regularization parameter to obtain an
exploitable solution. Nevertheless, the obtained values are very similar between the three
thermocouples, proving the good level of accuracy of the step responses computed with
STARCCM+.

Comparaison des flux calculés pour 3 expériences disctinctes Comparaison des flux calculés a partir de 3 TC (1Imm[8.6mm(/16.2mm)
500 500, - — =
—Flux calculé a partir du TC situé 8 Imm [ Manip 1 —Flux calculs:: d partir du TC situé Imm [ Manip 1
—Flux calculé a partir du TC situ¢ & Imm [ Manip 2| — Flux calculé & partir du TC situé 4 8.6mm = Manip 1
Flux calculé a partir du TC situé a lmm [ Manip 3 Flux calculé a partir du TC situé a 16.2mm [ Manip 1
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Figure 12. Heat flux estimation with the Figure 13. Heat flux estimation for the same
same thermocouple for three different experiment with three different thermocouples.
experiences.

5. During the tutorial...

We propose to apply the methods presented below considering experimental signals measured
during the tutorial using a simple experiment. The principle of this experiment is to heat a
sample with a lamp and to measure the temperature with thermocouples at several locations
within the medium. The transfer function will be either derived analytically or identified. The
measured signals will be recorded on a computer and the inverse problem will be solved using
the deconvolution technique. All the codes are based on Octave GNU software.
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Tutorial 9: Bayesian approach for inversion

S. Demeyer!
T LNE, Laboratoire National de Métrologie et d’Essais, Département Science
des Données et Incertitude

E-mail: severine.demeyer@Ine.fr

Abstract. The aim of this tutorial is to enable participants to apply Bayesian inversion
algorithms to estimate thermal properties of walls (thermal resistance, thermal
conductivity, areal heat capacity) and their associated uncertainty from surface
measurements of the wall. The Bayesian inversion relies on the setting of prior
distributions on the parameters of interest that are combined with the information gained
from the measurements to provide the posterior distributions of the thermal parameters.
Participants will experiment various prior settings and tuning parameter values as input
parameters of a given Bayesian algorithm and see the effect on the convergence of the
Bayesian algorithm and the posterior distributions. The required software is R with R
Studio user inferface and a R notebook is provided during the tutorial in addition to this
document.

List of acronyms:

MCMC: Markov Chain Monte Carlo
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1. Introduction

In the ANR RESBATI project?, a technical solution was developed to allow the in-situ estimation of the
thermal resistance of walls with interior wall insulation (IW1) when the thermal resistance is less than 4
m2K/W. A follow-up of this project ANR RESBIOBAT aims at investigating a solution for highly insulated
walls and other types of sustainable walls composed of bio-sourced hygroscopic products.

In the RESBATI project, the developed measuring device consisted of an active solicitation of the wall
by a local constant heating, to measure its flux and temperature dynamic responses and then to
determine its thermal resistance using identification methods (inverse modelling).

The objective of this tutorial is to apply a Bayesian inversion procedure to measurement data collected
during the ANR RESBATI project (inner surface temperature denoted TSI and absorbed flux
measurements), adapted from [Demeyer, 2021], to estimate the thermal resistance of a multi-layer wall
and its associated uncertainty.

Due to the active method applied to produce measurements, thermal resistance cannot be inferred
directly and requires the inversion (calibration) of a thermal model being able to produce temperatures
as a function of conductivity and heat capacity of unit area (at least) based on observations.

The thermal resistance of a multi-layer wall is given by the sum of the thermal resistance of each layer
asRk = Z{ﬂ% where k; and [; are respectively the thermal conductivity and thickness of layer i and I is

the number of layers.

! The RESBATI project was supported by ANR (Agence Nationale de la Recherche) the French National
Research Agency under Grant agreement ANR-16-CE22-0010-02.
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2. Description of the studied wall

The following IWI wall is considered in this tutorial, for which measured or tabulated values of the thermal
parameters of the constituents are displayed in Table 1. The results of the inversion will be compared

with the theoretical or experimental values.

Ambiance extérieure

- S
Enduit extérieur —

Mur support —

Ile d’Oléron, France
Sept. 24t — Sept 29%, 2023

ce intérieure

Layer Thickness Heat capacity | Thermal Thermal Thermal
(m) of unit area conductivity resistance resistance

cw /J/(Km?) | k/Wm'K'! R/ m?>KW-! %

Plasterboard e; =0.013 | cw, ky = 0.250 R, = 0.052 1.2
= 7.44 x 10°

Insulation e, =0.12 cw, k, =0.031 R, =3.87 91.5

=3x10*

Cinderblock e; = 0.15 cWs ks = 0.580 R; = 0.258 6.1
=9.5 x 10°

Exterior coating | e, = 0.015 | cw, k, =03 R, = 0.05 1.2
= 1.30 x 10°

R =423 100

Table 1 Measured or tabulated values of the thermal performance of the constituents of the wall

From Table 1, draw conclusions on the most influential layer
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3. Exploration of the direct thermal model

A 1D thermal model is considered. We assume that this simplified model, which does not depict
transverse flows in the walls, is well adapted to IWI walls.

3.1. Plot the output TSI curve obtained with the measured or tabulated values of the thermal
parameters in Table 1 and the observed TSI.

S —
- r,_e—f_d_’__

Tsi

—— observations
simulator output

15 20 25 30 35 40 45 50

| | | | |
0 5 10 15 20 25

time (hours)

3.2. Observe the effect of departures from these values on the curve, for the parameters of your
choice
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4. Methodology for Bayesian inversion

4.1.Inversion

Among all the input quantities to a simulator used to represent a physical process, only a fraction of
them are usually considered as the quantities of interest (the measurands), called calibration parameters
in the inversion terminology, the others being considered as control or nuisance parameters. Some other
inputs may be fixed to nominal values.

In this tutorial, the calibration parameters of the thermal model representing the thermal response of the
studied wall are the thermal parameters 6 of the wall. The control parameters x are observed variables
that allow to reproduce numerically the experimental conditions that have produced the observations,
see Figure 1.

From the experimental values and the outputs generated by the thermal model, the aim of the
identification technique is to find the values of the thermal parameters of the wall entered in the thermal
model so that the outputs are as close as possible to the experimental values.

6, calibration parameters —_— thermal model n(x, 6), scalar
(conductivity, areal heat ) —_— output
capacity, ...) simulator (temperature)
x, control parameters / y(x), scalar
(time, conditions, ...) observation
(temperature)

Figure 1 Schema of a physical model used as a simulator and the quantities involved in the calibration
of the simulator

Recently, Bayesian inversion procedure has been applied to infer thermo-physical properties of building
walls or envelopes from thermal physical models [lglesias, 2018], [Thebault, 2018], [Demeyer, 2021].

4.2.Steps for a Bayesian inversion

a) Choice of a statistical model for calibration

A model assuming no discrepancy between observations y; and outputs of the thermal model n for the
observed conditions x; and calibration parameters 6 writes

yi=n(x;,0)+¢g,i=1..,N
where ¢; is the measurement error, assumed to be independently normally distributed with standard
deviation u; the reported measurement uncertainty

& ~ N(O, ul-)

The previous model can be extended to take into account potentially underestimated reported
uncertainties u; by introducing an adjustment factor ¢ > 0 (the Birge ratio of the model)
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yi =n(x;,0)+oeg,i=1,..,N
Assuming that a2 ~ InvChi%(v,, s2), the marginal distribution of the observations integrated out o2 is
multivariate t-distributed

y N'tvo(n(x.Q);SSZs)
where x = (xy, ..., xy) and I, = diag(u?, ..., u?)

Bayesian inversion [Kennedy,2001], [Higdon, 2004], provides the posterior distribution denoted
m(0|y, x) of the calibration parameters 6 given observations y, control parameters x and a prior
distribution (6).

b) Choice of prior distributions

The potential ranges for the thermal parameters of each layer are given in Table 2 and uniform
distributions are chosen as prior distributions.

Layer Heat capacity of unit area Thermal conductivity

cw / J/(K.m?) k/Wm'K"!
Plasterboard 1x10° < cw; < 1.5%x10° 02<k; <08
Insulation 2x10* < cw, £2x10° 0.02 <k, <0.06
Cinderblock 6.5 x 10° < cwz < 2.5 x 10° 0.1<k;<23
Exterior coating 5x10% < cw, < 2% 10° 01<k,<18

Table 2 Potential values for thermal parameters of the insulation layer

c¢) Choice of a MCMC algorithm

The Metropolis-Hastings [Chib, 1995] algorithm (see Appendix B) is implemented in the function MH
which performs the MCMC simulations in the posterior distribution of 6

MH<- function(n_ sim,pars.init,scale,par names)

n_sim number of MCMC simulations
pars.init initial value 8

scale variance covariance matrix of the multivariate proposal distribution N(6/((c) ),%)

Additional functions:

addMHsimulations adds MCMC samples to a previously generated samples from the stationary
distribution

traceMH plots the MCMC simulations

histMH plots the histogram of the MCMC simulations

post trait computes the posterior mean and standard deviation of the thermal resistance and plots
the posterior density of the thermal resistance

MH function returns MCMC samples (also called chain) and the acceptance rate.
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d) Analysis of posterior samples from the Markov chains

- autocorrelation function of the chains
- traceplots

- density plots

- burn-in, thinning,...

Trace of cw1 Trace of cw2 Trace of cw3 Trace of cwé
== = 3 o
T EI\ 3 g3/ - %8352
g T T T § f T T T =2 T T T g
0 5000 15000 0 5000 15000 ® 0 s000 15000 -~ 0 5000 15000
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Trace of ki Trace of k2 Trace of k3 Trace of k4
S T
g T f f T g T f T T o T T T 3 T T T T
0 5000 15000 0 5000 15000 0 5000 15000 0 5000 15000
lteration lteration teration lteration

Comment the traceplots

e) Convergence diagnostics

Convergence diagnostics tools are usually employed to check the stationarity of the Markov chain. A
review of convergence diagnostics for MCMC is given in [Roy, 2020], among which we will focus on the
effective sample size and the Gelman-Rubin diagnostic. In brief, the effective sample size gives the
number of independent samples equivalent to a set of correlated Markov chain samples and the output
of the Gelman-Rubin diagnostic is the so-called potential scale reduction factor which should be close
to 1 and is computed from at least two chains ran with overdispersed starting points w.r.t. the posterior
distribution.

f) Summary graph

Complete the plot of Section 3.1 with n(8,,5:) Where 8, is the vector of the posterior means

> post_mean
cwl cw2 cw3 cw4 k1 k2 k3 k4
5.?13307e+05 1.169856e+05 9.847284e+05 1.294803e+06 2.020837e-01 3.014809e-02 5.724725e-01 2.811880e-01
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f) Conclusion

For this problem, the traceplot of some of the chains is typical of non identifiability, meaning that various
combinations of values of these parameters can yield to the same likelihood of the data.

However, the identified parameters allow to reproduce the observed TSI curve.

Indeed, only the global thermal resistance is identifiable with the experimental setting, not the thermal
resistance of the individual constituents.
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5. Estimation of the thermal resistance of the wall

After discarding the burn-in period and applying thinning to the chains, plot the posterior density of the
thermal resistance. Compare with the theoretical R value.

Density

10 20 30 40 50 60 70

-

[ | I [ I I I 1
4275 4280 4285 4.290 4295 4300 4.305 4310

0
|

R (m2 K/W)

From the resulting posterior simulations, give posterior estimates

R _posterior =..........cccooiiiiiiiinn.. U(R_posterion)=..........c.ccocovvivinininennnnn.

relative uncertainty = (U/R)= ...

Conclusion
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Appendix

A) Inverse chi-squared distribution for o2

Inverse chi-squared prior distribution

nu0=2 s02=1
© =  nuo=5 s02=2
c 7] — u0=8 w— 502=5
nu0=2, s02=1000
©
<
2
D
®
<
T g
o~
84
o
S+

Figure 2 Plots of the density of the inverse chi-squared distribution with v, degrees of freedom and
scale parameter s3 for various combinations of these values.

B) Metropolis-Hastings algorithm

Input: observations (Vy,..,¥Yn)
Output: M samples from marginal posterior distribution m(8|y,x)

O J o U b W N

9:

10:
11:
12:

initialize: 8W,n(x,8,)
compute a = In(m(6W)l (6@]y, x))
repeat
lel+1;
sample 0© ~ N, x)
compute 7 =7n(x,0)
compute b = In(m(8©)l;, 6]y, x))
let a =min(exp(b —a),1) and u ~ Unif(0,1)
if a>u then 60 =90

else AW =901

a<b

until =M
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Tutorial 10;: Thermomechanical inversion
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Abstract. The aim of this tutorial is to present an inverse thermomechanical
methodology. By means of an analytical approach, we establish a thermoelastic
mechanical transfer function between the temperature of a heated surface and the
mechanical distortion of a solid at a given abscissa far from the surface. Subsequently,
we measure the distortion at discrete time intervals using strain gauge and we apply a
deconvolution product for those measurements to identify the temperature of the heated
surface. By this way, it is no longer necessary to know the temperature field to solve the
thermomechanical problem of our experimental device. We demonstrate that the
inversion procedure can be applied successfully even in situations where the measured
signal is affected by noise, through using the Tikhonov regularization method. Lastly,
the surface temperature identified from the deformation measurements is compared to
a temperature measurement.

List of acronyms:

NLPE:
PEP:
SVD:
IHCP
OLS:

Non-Linear Parameter Estimation
Parameter Estimation Problem
Singular Value Decomposition
Inverse Heat conduction Problem
Ordinary Least Squares
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1.Introduction

In most mechanical experiments, we find that temperature plays a major role in the
behavior of the system under study. Mechanical constraints, and thus, the displacements
resulting from mechanical distortions, do depend on the temperature field present in the
system. This is particularly relevant in the case of thermal surface treatment processes that
are applied to manufactured objects.

In the context of heat transfer studies, the problem of estimating boundary conditions,
such as the heat flux flowing thru the surface, or such as the temperature at the surface, have
been the subject of many studies in the literature [1]-[3]. By reviewing the studies related to
the IHCP problem, we observe that temperature measurements are being used in almost every
case. Experimentally, it is found that determining the evolution of temperatures at certain points
of the device is essential to solve the IHCP. Sensitivity analysis makes it possible to analyze
and optimize the position of temperature sensors in order to ensure the feasibility of the
resolution. However, some studies approach the thermomechanical inverse problem. Wang et
al. [4]conducted an experiment to measure temperatures inside solid devices by means of
thermocouples, and based on the obtained measurements, they performed a thermal inverse
study by the Conjugate Gradient method. As indicated in many studies trying to solve the
Inverse Problem [5], [6], sensitivity analysis shows that the location of the thermocouples
should be as close as possible to the heated surface. Then, using the experimental data from
Wang et al. [4], Chen and Wu [7] had proposed a hybrid techniqgue based on Laplace
Transform and on the Finite Difference method, to estimate the temperature of the laser-
heated surface. Lee and Huang [8] developed an integral-transform-free methodology for one-
dimensional IHCP with time-dependent boundary conditions to estimate the heat flux of the
same problem. They approximated the unknown surface temperature using a fourth-degree
polynomial function in order to reduce the number of unknowns of the IHCP.

So, it would be interesting to solve the IHCP from mechanical measurements only
(displacement measurement) without requiring any temperature sensor. But this novel
approach requires to solve a coupled thermoelastic problem. In the literature, only a few
investigations [9]-[13] were able to predict the unknown boundary condition on the heated
surface via using only displacement sensors. Blanc and Raynaud [10] solved the IHCP by
using the thermal strain and temperature measurements instead of the temperature
measurements only. Taler and Zborowski [11] used the discrete form of Duhamel’s integral
and future time steps, in order to control the thermal stress in elements of complex shapes.
Chen et al. [12] applied a hybrid numerical algorithm of the Laplace transform technique, the
finite-difference method with a sequential-in-time concept, and the least-squares scheme, so
as to estimate the surface heat flux from the theory of dynamic thermal stresses. Recently, Tu
[13] developed a strain gauge measurement method to measure the thermal strain and
performed the thermal inverse analysis of the laser heating process. Bauzin et al proposed a
thermoelastic mechanical and heat conduction study through inverse method and transfer
functions [14].

Solving the inverse problem in heat transfer through transfer functions has been the
subject of several works in the literature. Fernandes et al. [15] solve the IHCP
(multidimensional problem) by identifying the analytical transfer function by means of Green'’s
functions. Al Hadad et al. [16] performed an experimental transfer function identification for the
thermal impedance and transmittance in a channel heated by an upstream unsteady
volumetric heat source.
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In this study, we develop a thermoelastic transfer function between the temperature of a
heated surface and the mechanical distortion of a solid at a given abscissa far from the surface.
This analytical model is validated by comparison with a numerical one. In a first hand, the
identification of the linear coefficient of thermal expansion is performed from measurements of
temperatures and mechanical distortion.

2. Analytical approach
2.1 Thermoelastic transfer function

To serve as a model for our study, we consider a thin cylinder with constant cross section,
made of a material that is both homogeneous and isotropic (Fig. 1). The cylinder is heated on
its surface at the point of abscissa x=0 and it is fixed at its other end, at x = L. We measure
the displacement of the rod particles in a point located at abscissa x. In order to solve the
thermoelastic problem associated to this model, we assume that no radial nor circumferential
expansion occurs. Furthermore, we assume that the particles of the rod will undergo only slow
motion, so that the cylinder behaves according to the longitudinal free vibration of a rod model.
The large length-to-diameter ratio of the cylinder will be taken into account to ensure the one-
dimensional nature of the thermoelastic problem. Under those assumptions, and as it is

presented by Tu in [13], the equation for the displacement u(x,t) could be written as follows
[14], [17]:
o'u 1o oT

————=k,—, 0< x< L, t>0
x ctatr O ox @
where the parameters ko and co are defined as
1+v
=1t & =26 (1-v)/[ p(1-2v)] 2)

In addition, the relationship between the stress o(x,t), the displacement u(x,t), and the

temperature T(x,t)can be generated from the one-dimensional Duhamel-Neumann equation

in terms of the shear modulus G, the Poisson’s ratio v, and the linear coefficient of thermal
expansion ¢, as:

2G ou(x,t
a(x,t)zm[(l—v) éx ) _q (1+v)T (x.1) 3)
Using the boundary condition a(O,t) =0 on the heated surface, we can write:
ou(0,t
2O, 1) @

Because we assume a constant surrounding temperature T, , in the experimental process, the
temperature function T(x,t) and T,(t) are defined as the rise of temperature above the
ambient temperature T, . Moreover, the cylinder is fixed at the unheated end (x=L), the
other boundary condition is:

u(L,t)=0 (5)
The cylinder is initially at rest, the initial conditions are thus:
ou(x,0
u(x,O)zo,M:O (6)
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Deformation sensor
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Figure 1 : Schematic dlagram of the problem with a displacement sensor.

We recall that the Laplace transform of a function f is defined as follows:

0

F()=L{f(tx)}=]f(t.x)e"dt (7)
0
Where: L is the Laplace operator, p the Laplace variable. The inverse Laplace transform, given
by equation (8), can be used to obtain back function f from its Laplace-transformed form. In
this study, in order to compute the inverse Laplace transform if the expression is not explicit,
a numerical Euler procedure [18] is used.

f(xt)=L*"{F(x)} (8)
The Laplace transform is applied to the displacement; U = L{u(x,t)}. The equations (1), (5)
and (6) become:

o0 p*- | of
_P gL
x ¢l ° ox ©)
_ ou _
U(L)=0;| — =k
( ) L@X ]xo olo (10)

In order to take into account the heat, a time-dependent temperature function T, (t) is imposed

on the surface (x=0) at the end of the cylinder (Eq. (10)). This function will be unknown and
needs to be identified. Moreover, in order to solve the mechanical problem of the equation (9)
, it is necessary to know the expression of the Laplace transform of the temperature T in the
solid. The cylinder is insulated along the longitudinal direction, resulting in the surface of the
unheated end to be considered as a zero temperature gradient. Furthermore, the large length-
to-diameter ratio of the cylinder permits us to assume one-dimensional heat conduction. The
governing partial differential equation, and the boundary and initial conditions of the heat
conduction system are thus:

2
a—zzia—T 0< x< L, t>0 (11)
OX
T(0.t)=Ty(t) (12)
a—T:O, x=L,t>0 (13)
OX
T(x,0)=0, 0<x<L,t=0 (14)
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The Laplace transform is this time applied to the temperature variable, within equations (11)-
(14) and the solution of this system of equations in the Laplace space can be written in the
following form:

_ ch[q }_
(x)= Ch(qL) (15)
with qz\/E, and for the heat flux:
o
shiq(L—x)|_
P(x)=-Aq [Ch((qL) 5 (16)

By replacing the expression of the temperature in the transformed equations (9) and (10), it
comes:

o0 p? - sh[q(L-x)] -
-—U=-k,qg———=T,
X o ch(qt) ° (17)
_ ou _
U(L)=0;| — | =k,T
( ) [ax lzo 0'o (18)
For a fixed x, the relationship between tDe disp_laceme_:nt and the temperature is written as:
U(x)=G,(x)T, (19)
The thermomelastic transfer function G(x)is
_ k sh(pq(L-x)) sh(q(L-x
Gu (X)= 0 - ﬂ ( ( )) _ ( ( )) (20)
a(1-5%) ch(dL) ch(aL)
with g =24
CO

Similarly, it is possible to calculate the displacement at a given abscissa x in the solid from the
knowledge of the temperature T (x)=L{T(x,t)} at this position by the following relation:

U(x)=M,(x)-T(x) (21)

J ch( qL 22)

s the |mpulse response of the

with:

_ h L-
MU(X): kO - S (ﬂq( X (
q(1-8°) ch(BqL) ch(qL
The inverse Laplace transform of the transfer function G
problem (equation (23)):

g(xt)=L"{G,(x)} (23)

The deformation ¢ is related to the displacement u by the following relation (in the Laplace
space):
aJ(x,p)

g(x, p):T (24)

So it comes by deriving the expression U(x) from with respect to x:
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oK [en(a(t-x)) o, ch(Ba(L-x)) | -
z(x, p)—(l_ﬁz)[ a@ 7 (sl J-To (25)
The transfer function for de distortion is:
G(X p): Ko (Ch(q(L—X))_ 2Ch('8q(|"x))]
' (1—,82) ch(qL) ch(aL) (26)

g(x,p)=G(x,p)-T,
In order to return into the temporal space and calculate the impulse response, a numerical
inversion is used (Euler procedure [21]). Indeed, in this general case, the expression of
g(xt) the inverse Laplace transformation G(x, p)is not explicit.

2.2 Simplification of the transfer function

If we neglect the vibratory part of the mechanical equation ( g very small), it comes:

7 (x p)=k{—6“(q“'x))]-fo

ch(aL) (27)
£(xp)=G,(x.p)T,
With
G, (x.p)=k (%:L)X))} (28)

By replacing hyperbolic cosines with their exponential expressions, the deformation is written:
eq(L—x) +e—q(L—x) _

E(xp)=k—g T (29)
Either
_ e ¥4 _
g(x,p)=k, e o (30)
And the serial development of the exponential is written:
1 < N __on
e~ (e (31)
Which gives the expression of the Laplace transformation distortion :
E(X, p) _ kOZ(_l)n (e—q(ZnL+x) n e—q(ZL(n+l)—x) ) -ITO (32)
n=0
The reverse Laplace transformation of e % is known:
x
Lt {e‘qx } =g (33)

2\ at®
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The explicit expression in this case simplified for the deformation is written:

e(x) =k, 3 (-1)

=1

The simplified impulse response is:

gs(x’t): k0

n

> (-1)

——f
-0 2\ mat®

= (2nL+x)

——€
2\ mat®

J’_

—(2nL+x)?
+

o| (2nL+Xx) % (2L(n+1)—x)e*(2'-(“7*1)*x)2

2\ mat®

(2L(n+1)-x)

2 mat?

4at

*To(t)

~(2L(n+1)—x)*
e 4at

(34)

(35)

For the rest of the study, the hypothesis that g(x,t)=g,(x,t) will be made.

2.3 Impulse response

The inverse Laplace transform of the transfer function G (x) is the impulse response of the

problem (equation (35)). An example of the impulse response for the displacement is
presented in Figure 2.on a Cartesian scale and on a semi logarithmic scale for different
abscissae in the solid.

(A~
g (xt)=L"{G(x)f (36)
-5
4 x10
-5
4 %10 x=0.06 m
x=0.06 m 351 x=0.01 m| -
3.5F) ——x=0.01 m x=0.02 m
I\ x=0.02 m 3k x=0.03m| |
I x=0.03 m =) x=0.04 m
= o x=0.04 m 2 x=0.05 m
-g | x=0.05 m g 25
< Ho &
g 25 | E
s \ S 2
1 | 2
3 o2y 5
2 ‘ EREL
= 1571
2,
g | £ 1
i
‘ 0.5
0.5 P
e TS
ol P S ol g —
0 2 4 6 8 10 102 107 10° 10" 107
Time [s] Time [s]

Figure 2 : Impulse response for different positions x for AA1100.

These impulse responses are calculated with the thermo-physical properties of AA1100
aluminum alloy. The thermo-physical properties and material properties of the AA1100
aluminum alloy are:

p=2710kg-m>, 2=222W-m™*-K™, C,=904J -kg~'K*,G=2.69-10°N-m?, v=0.3, and
o, =23-10°K™. The length L of the sample cylinder is 10 cm.
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2.4 Response calculation of displacements by means of the convolution product

It is shown that the output could be calculated by the convolution product [16], [19], [20]
between the input (excitation or cause) T, (t) and a corresponding thermoelastic transfer

function g(x,t) (impulse response of the system given by equation (23)):
&(xt)=g(xt)*Ty(t) (37)
where * denotes the convolution product. For any input T, (t) the output £(x,t) is given by the

convolution integral, as expressed in Eq. (38) represented in terms of Temperature (input) and
deformation (response) [15]. Thus, we have:

g(x,t)=jg(x,t—§)To(f)d§

Parameterization of the excitation T, (t) over a base of piecewise constant functions defined

(38)

on a constant time step At allows to exhibit a sampling ¢, =g(x,tk)of the response. The
convolution product can then be expressed in the following matrix form [16]:

e=CT (39)
where:
e | 9, 0 0] [T, ]
&, 9, 9, : T,
g=| * L cel T % HoTe| (40)
Ny ng—l 0 Ny
En, _gNf On,, 9, 91_ N,
with:
&
g, = [g(xt)t (41)

Gy
C:i is a square matrix of size N, xN; where each element g, is given by equation (41) . It is
important to note that equation (39) is valid, it is necessary that the time step be small enough
with respect to the characteristic times of the input T (t) and transfer function g(x,t). In a first

approach, the temporal discretization being sufficiently fine, the hypothesis of a linear variation
on the time step At can be made and it comes:

) :(g(x,ti% g(x,ti_l)](ti )

2

(42)

2.5 Validation of the analytical solution with numerical simulations

The analytical solution developed is compared to a numerical solution computed by finite
element software. The mesh resolution chosen is sufficiently fine to ensure that discretization

has no significant impact on the results. The applied temperature T, (t) on the surface in

X=0mis a door function (Figure 3). The temporal deformation calculated by a numerical

method (finite elements) is compared in Figure 3 to the deformation values resulting from our
analytical approach using the convolution product presented previously.
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Figure 3 : Input surface temperature and comparison of the numerical solution (FEM)
with analytical method for the deformation in x=0.01Im

It can be seen that the analytical solution and the numerical solution give very similar results.
The analytical approach is thus validated. Consequently, the proposed analytical approach
can also be used in a reverse approach to identify the surface temperature from the
measurement of deformation.

2. Experimental device

The experimental setup consists of a steel bar, heated at its end by a heating element. On the
other side, the bar is fixed in a clamp, the displacement is zero. Temperature measurement is
performed (in) different positions by type K thermocouples directly welded to the material
(Figure 4 (a)). A strain gauge is fixed to the bar to measure the deformation (Figure 4 (a)).
The positions of the sensors are measured by image analysis. The solid is isolated to be placed
in similar conditions (in) the model presented (Figure 4 (b)).

(a) S

Figure 4 : Experimental device
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The temperature of the strain gauge is closed to the sample one. Then, the sensor also
expands according to the temperature evolution. Therefore, the measurement represents the
differential of deformation between the sensor and the solid:

Emes = Esteel ™ Esensor (43)
Taking a relative expansion coefficient in the analytical model, we represent the experimental

measurements:

O mes = O steel — O sensor (44)

If the expansion coefficient of the steel of the bar is lower than that of the strain gauge
coefficient, then a negative deformation will be measured (the gauge being in compression).

The thermal properties of the steel are: p=8000kg-m=®, A=417W-m*.-K™,
C,=4746J -kg 'K . The expansion coefficient of the sensor is given by the manufacturer

and is o g, =11.7-10° K™,

Examples of measurements for the temperatures and the deformation are presented in Figure
5. The positions of the strain gauge from the imposed temperature position is 17.83mm. The
temperature evolutions are defined as the rise of temperature, above the ambient temperature
(or initial temperature).

%107
70 T T T T T T T 1
60 10
-1
50
— 1-2
< 40 :
g 135
2
< 30 é
—
g 14 &
(o]
5 20 A
= {-5
1
0 1-6
0 4-7
— T%mposﬁd —— Ti=0.013 Ti=0.025 €sensor
-10 1 1 1 1 1 1 1 -8
0 50 100 150 200 250 300 350 400
Time [s]

Figure 5 : Experimental measurements (temperature and deformation).

The linear coefficient of thermal expansion will be estimated in part 3. The experimental bench
and the analytical model do not take into account the same radial mechanical boundary
conditions. Then, the Poisson’s ratio is fixed to zero. in this case, the deformations of the
analytical model (taking into account an imposed zero radial displacement) and the
deformations calculated by a numerical model with free radial displacement are similar (Figure
6)
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— €Analytic; V = 0, U(T, .’L’) =0
+  €numeric; V = 0-37U(T= 'T) = free i

25

Deformation

0 5I0 1(I)0 15‘0 200 25‘0 300
Time [s]
Figure 6 : Comparison of the deformation between
the analytical solution (imposed radial displacement and
a numerical solution (with representative experimental boundary condition).

3. Identification of the linear coefficient of thermal expansion

In order to identify the linear coefficient of thermal expansion o; ( PEP), we use a method of

minimisation criterion (OLS) which is represented by the functional F , such:

i=N 2

FN:Z(ej—gj) (45)

j=1
For each time step j (i.e. time t;), the calculated temperatures; by the direct model is

compared to the measured temperature ¢;. The minimization procedure of F with respect to
the unknown linear coefficient of thermal expansion consists to solve the equation:
i=N fg.
Z—J(gj—g,-)=0 (46)
=l aaT

The system is non-linear (NLPE) but does not pose any problem of resolution. It is solved
by an algorithm of Levenberg Marquardt [21], [22]. The identified value is

Qr nee =—1.58-107 K™, Then the estimated value of the material is a; ., =10.94-10° K™

which is in agreement with the values that can be found in the literature. The comparison of
the strain gauge measurement and the calculated deformation with the identified value is
presented in Figure 7.
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Figure 7 : Measurement, calculation with the identified ¢o; and residues of the deformation

4. ldentification of the surface temperature from deformation
4.1 lIdentification Procedure

For any dynamic system, the relation between input and output in the complex variable p
domain is given by the multiplication expressed in Eg. (19) or in the time domain by the
convolution (Eq. (37)). Thus, in terms of the temperature/deformation we can write the
deconvolution product:

To(t)= g()l(,t) *e(xt) (47)

Therefore, observing Eq.(47), it results that an inversion occurred between the input/output
pair. The solution of this problem is the surface temperature T, (t) the input being the

deformation. The new transfer function of this system is ]/g(x,t). By discretizing the linear
problem on a constant time step At, according to equation (8) the matrix system becomes:

T=C¢ (48)
In order to invert the system, a singular value decomposition of the matrix C is carried out:
C=uDy’ (49)

with:

D =diag(D,,D,....,Dy ) where D, >D, >...> D, (50)
Equation (48) is then written in the following form:
T=vy-DW'u (51)
with:
D" =diag(D,*,D,"....,Dy*) (52)

According to equation (47), it is then possible to calculate the temporal evolution of the surface
temperature T, (t) (which we will name “identified surface temperature” in the sequel of this
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article) from the knowledge of the deformation at a certain depth and the thermomechanical
characteristics of the material. This identification of the surface temperature from the
deformation data will be validated on experimental case.

4.2 Sensitivity analysis to the known parameters

It is important to present how the performance of the reconstruction of the surface temperature
can be biased when some confidence bounds of the parameters are considered. The length
of the cylinder L has no impact on the deformation calculation until the heat front has reached
the end of the specimen. Similarly, an error in this parameter would have very little impact on
the result. For the configuration presented and for the numerical values used in this study, the
shear modulus does not affect significantly the calculation on the deformation. For the other
physical parameters, Figure 8 presents the error made on the identification of the surface

temperature with regard to the error made on each parameter (a5, v, a). The calculation is
performed from perfect deformation data, without noise.

4 -

% error on estimated surface temperature

0 2 4 6 8 10

% error on parameter
Figure 8 : Impact of the error of the known parameters
on the estimation of the surface temperature.

The imposed surface temperature is constant T,. The error on the estimated temperature is

(fo =T, )/TO . It can be seen that the sensitivities of the model to the thermal and mechanical

characteristics are in the same order of magnitude. The calculation has been performed with
the numerical values given in section 2.3. Thus, from the knowledge of the accuracy of the
thermomechanical characteristics, it is possible to predict the error made in the estimation of
the surface temperature. We can notice that if the characteristics are perfectly known, we find
perfectly the input temperature. In addition, identification from a noised data representative of
a real measurements cannot be carried out without regularization of the problem (cf. part 4.3)
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4.3 Regularized identification of the surface temperature

So far, we have achieved that the estimation procedure using the deconvolution product
can be used without prior knowledge of the form of the surface temperature function. In the
previous examples, the signals being used were interpolated curves (i.e. signal was not
affected by noise). However, the use of a noisy deformation signal in the procedure causes
instability in the inversion of the system of equations (51). It is therefore essential to regularize
the procedure. Indeed, the matrix to be inverted is ill-conditioned: the ratio of the largest to the
smallest singular value is large. In the literature two techniques are proposed to treat this
undesirable situation: either by filtering the noise or by regularizing the matrix to be inverted,
S0 as to make it well-conditioned [23]. It is usually preferable to use the matrix regularization
approach. Hence, in this work, we will regularize the matrix to be inverted, in order to get a
stable identification. We present in this study the Tikhonov regularization method [24], [25].

The estimation of parameters is performed by minimizing the square of the norm of the

difference between measured and calculated deformations. The functional F(T) of the least-
squares method is given by the following equation:
2
F(T)=|CT - e + 2T (53)
Where 4 is the Tikhonov regularization parameter which varies from 0 to «. If x£=0, this

corresponds to the case without regularization. The Tikhonov estimate can be given an inverse
SVD-like form:

L,=V-DU'u (54)
with :
. D D D
D' =dia 12 N 55
=" g(Dlz +u° D+ Dy” +4° %)

The choice of the regularization parameter is important. If the standard deviation of the
measurement noise o,, is known, the optimal hyper-parameter ( ,qu) value can be found by
Morozov’s discrepancy principle. The regularization hyper-parameter value can be set
according to Morozov’s discrepancy principle as the value which proscribes the inversion
process to go beyond a minimization making residuals lower than the measurement noise [23].
This can be expressed as:

(56)

RMSR is the Root Mean Square Residual, o, is the standard deviation of the noise and u;*

the deformation signal recalculated using estimation approach. In the rest of this study, we will
take the numerical cases studied previously by noisily randomizing the data.
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4.4 Numerical case

The deformation is simulated from the door temperature imposed on the surface. The data
are now corrupted by noise, such as ¢(t)=¢(t)"™ +e . e is a uniformly distributed random

number with —e _ <e<e_ . The standard deviation is o =1.116-10 m, which is

representative of the experimental noise. Figure 9 shows this randomly noisy deformation that

will be used for the identification of the door function of temperature that has been imposed in
part 2.5.

%107
60 . 1
50 10
9 1.1
S 40 5
5 =
g 12 E
3 30 S
= S
£ 3
o 13 o
3 20 2
& 1,2
= -4
X 19
1-5
0
I 1 I -6
0 50 100 150 200

Time [s]
Figure 9 : Noised relative deformation in x=0.01m.
If the inversion procedure based on a deconvolution product is not regularized, then we obtain
an unstable, divergent system. A Tikhonov regularization is applied. Figure 10 presents the

evolution of RMSR as a function of the hyper-parameter. The equality RMSR =o, is calculated

by using the function fsolve in Matlab. The optimum hyper-parameter for the inversion
procedure is 1, =3.8782-10°.
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Figure 10 : RMSR for Tikhonov surface temperature estimation.

Then, the result of the identification of the surface temperature is presented in Figure 11
for three values of Tikhonov regularization parameter (fyins Hopim /2 2Mopin)- We thus

visualize the sensitivity of the estimates with respect to some deviations in the regularization
parameter value from the Morozov principle. It is noted that the temperature identified is
representative of the temperature entered in the model.

We find that the standard deviation of the residues is the standard deviation of the added
noise to the deformation. The identification performed is therefore coherent. The inversion
procedure is thus validated by the residuals recalculated after identification.
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Figure 11 : Comparison of the input surface temperature and the identified surface
temperature using noised deformation for different Tikhonov regularization parameter.
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4.5 Experimental Results

The experimental measurements of the strain gauge are used to identify the real imposed
temperature (which is measured to verify the inversion) (Figure 5). Then, the result of the
identification of the surface temperature is presented in Figure 12 for three values of Tikhonov
regularization parameter ( yyin s Hoptim /2, 2 fhopim)- We thus visualize the sensitivity of the

estimates with respect to some deviations in the regularization parameter value from the
Morozov principle. It is noted that the temperature identified is representative of the
temperature entered in the model.

Then, it is thus possible to reconstruct the temperature signal applied to the surface. The

residues on the deformation (o =1.31-10 'm) (Figure 13) are in agreement with the noise

residues

measured on the experimental setup (o, =1.116-10 'm).
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Figure 12 : Comparison of the real input surface temperature and the identified surface
temperature using gauge strain measurements for different Tikhonov regularization
parameter.
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Figure 13 : Residues for different Tikhonov regularization parameter.

5. Conclusion

This work proposes an inverse methodology to define the temperature evolution of a heated
surface through the deformation measurements. The approach presented is based on
mechanical and thermal equations, applied to the measurement of deformation resulting from
mechanical distortions due to heating. Indeed, no temperature measurement is required. The
inversion procedure developed in this work is based on the convolution product of the impulse
response of the thermoelastic problem, by the deformation signal. This work provides a novel
approach that is easy to use. An inverse identification method for the linear coefficient of
thermal expansion is presented. The results obtained from experimental measurements are
consistent. In addition, our procedure enables identification of the evolution governing the
temperature on the surface of a heated solid, whatever the form of the temperature function.
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Abstract. Modulated thermotransmittance infrared imaging is a non-destructive
method for measuring thermal properties and temperature fields in semi-transparent
media. It differs from IR thermography as it does not require knowledge of the ma-
terial’s emissivity and can achieve spatial resolutions down to 10 pm/px. Through
this experimental tutorial, we propose to measure the heat diffusivity and the ther-
mal field in a glass wafer. After a brief description of the setup and the demodulation
technique, the analytical model of the temperature will be derived and used in an
inverse method to measure the borofloat thermal diffusivity.
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1 Introduction

In this tutorial work, the semitransparent materials under study are non-scattering at their
surface as their roughness is much lower than the illumination wavelength A € [2 — 6] pm,
and the reflectance at their surface is considered specular. All our samples are double-side
polished to remain in this working hypothesis. In addition, we use homogeneous materials,
whose scattering in the volume is negligible compared to the absorbance. We develop the
experiment mainly using a double-side polished glass wafer. In addition, these materials can
reflect or absorb a part of the incident light, as shown in Figure 1.

We present some contactless methods to measure temperature of semitransparent materials,
without coating them. First, we introduce the IRT applied to semitransparent media and the
associated issue to measure the temperature field. Second, we detail the principle of thermo-
transmittance.

—vw\ Proper emission

—— Incident flux
Semitransparent
medium Transmitted flux

Reflected flux

Figure 1: IR radiations interactions with a semitransparent medium.
IRT applied to semitransparent materials

Measuring temperature in semitransparent media using IRT is much more challenging than
in opaque ones. The proper emission comes from the two material surfaces, but also from
its volume. The emissivity is no longer defined for these materials: one uses the apparent
emissivity [1] or emittance [2]. In addition, it is essential to consider the radiations from the
environment, which are reflected, absorbed, and transmitted through the material [3].

Because of these challenges, IRT in semitransparent media is not yet widely used, although
several groups are interested in it and develop specific calibration processes. For instance,
some works measured the emittance, such as [3, 4, 5, 6], but the definition may vary from
one study to another, and not always take into account the direction of radiations. Other
works focused on thermal properties measurements of these materials, such as the thermal
diffusivity [7]. In this thesis work, we propose an alternative method that does not require the
knowledge of the emittance of the medium and allows to discriminate the signal of interest
from the radiation coming from the environment.

Thermotransmittance
We introduce the thermotransmittance phenomenon, by establishing the link between tem-

perature dependence of the transmitted light in non-opaque materials [8]. As a consequence,
to measure temperature using thermotransmittance, we need the proportionality factor: the
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thermotransmittance coefficient x (K~!). Unfortunately, there is no database on the coeffi-
cient . This property is often measured but mostly in the visible or NIR range [9].

Preliminary studies reported promising results in calibrating the thermotransmittance coef-
ficient for various materials across different spectral ranges, including mid-infrared [10] and
terahertz [11]. Additionally, works demonstrated the temperature dependency of absorbance
in water-ethanol mixtures within the near-infrared spectrum [12]|. As the thermotransmittance
signal is affected by both absorbance and reflectance variations (see section 2), it has potential
applications for diverse semitransparent media, providing either a measurement of thermore-
flectance, thermo-absorbance, or a combination of both. Finally, these studies showed that the
thermal dependency of absorbance/transmittance varies with the illumination wavelength. As
a result, it should be possible to differentiate several components of a semitransparent media
depending on their thermotransmittance coefficient behavior as a function of the wavelength,
provided the initial spectrum of each component is known.

However, the thermotransmittance coefficient in the mid-IR is usually weak, about 10™% K~1.
Therefore, it is essential to heat the sample sufficiently and use sensitive detectors (in the
work [10] AT = 120 K and detector with a dynamic range of 21¢).

The objectives of this tutorial are as follows:

1. to measure the thermotransmittance in a semi-transparent media from an IR beam;

2. to estimate the heat diffusivity in the bulk of the semi-transparent media.

2 Thermotransmittance working principle and modeling

This section describes the working principle of thermotransmittance. First, the transmitted
signal through a non-scattering media is detailed. Second, we introduce the thermal depen-
dence of this signal and present the working hypotheses.

Transmittance of a semitransparent material

When a monochromatic incident flux @ illuminates a semitransparent material, a part of the
flux is reflected at the material surface, and a part is transmitted through the sample [13]
depending on the reflectance coefficient Ry, as illustrated in Figure 2. As it passes through the
medium, the flux is attenuated by the attenuation coefficient oy (m~!) within the thickness
L, (m) of the material. At ambient temperature, the transmitted flux is written & = ®ly,
with I'g the transmittance of the material which is expressed in the following equation.

Ty = [1 _ R0]2€_ fOLZ ap(z)dz (1)

Expression of the thermotransmittance

Since the optical properties of a material vary with temperature, we express the equation 1
as a function of temperature in the general case, where both surfaces of the sample are not
necessarily at the same temperature.

D(T) = [1 = R [1 — R(Ty)] ¢~ o1 o)
————
Sur?arce 1 Surface 2 Volume

The thermal dependency of transmittance comes from both the reflectance and the attenuation
coefficient. At the first order, their temperature variations are expressed in the equations 3
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o DoRo

air
1 Do(1-Ro)

L, sample

Dolo

Figure 2: Illustration of a light beam path in a semitransparent medium.

and 4, with AT = T — Ty the temperature variation, kg the thermoreflectance coeflicient
(K1), and k, the thermo-absorbance coefficient (K—1).

=
3
I

R()[l + /iRAT] (3)
ao[l + RQAT] (4)

2
3
I

By injecting 3 and 4 in the expression 2 and linearizing the exponential term, the thermo-
transmittance relation at first order is given in the following expression.

AT(T L
(7) ~— Forr [AT) + AT] — apka AT(z)dz (5)
FO 1-— Ro 0
reflectance absorbance

As a result, the reflectance part gives information about the temperature variations at the
surfaces of the sample, whereas the absorbance provides information on the temperature
gradient through the thickness. In this tutorial we limit the study to uniform temperature
along the material thickness (AT = ATy = (AT), = AT). The thermotransmittance has
therefore a simple expression:

AT(T)
Iy

K is the thermotransmittance coefficient (K~1) which contains both absorbance and reflectance
thermal dependencies.

= KAT (6)

3 Modulated thermotransmittance imaging experimental setup

Figure 3 illustrates the experimental setup for modulated thermotransmittance imaging. The
thermal modulation of the sample has great advantage to increase the signal to noise ratio by
filtering the noise from images in order to detect the weak thermotransmittance signal.
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In the experimental setup, we use the IR source, the mechanical chopper for modulating the
source, the annular Peltier module for heating the sample, and an infrared camera as detector.
The double-demodulation is post-processed, and the operations are detailed in section 4.

IR Lamp +
Monochromator

Synchronization

Annular Peltier
and Sample

Beam expander

IR beam + 2f

proper emission .

Peltier &
Sample IR camera

Temperature
modaulation, fr

Figure 3: Experimental setup for modulated thermotransmittance imaging measurement. The
insert illustrates the Peltier module with its dimensions.

Heating of the sample

The sample is heated using a ring-shaped Peltier module. The temperature at the edges of
the wafer is modulated at T'(t) = Tp + AT cos(2w frt), with Ty ~ 20°C, AT ~ 10°C. We will
choose the modulation frequency fr in the order of tens mHz for Borofloat wafer.

Infrared camera properties

We use an infrared camera as detector (FLIR SC7000). The camera has an Indium-antimonide
sensor composed of 256 x 320 pixels with a pitch of 30 um. The focal length of the objective is
50 mm, and the spatial resolution of the images recorded by the camera around 200 pm/pixel.
In addition, the camera spectral sensitivity range is A € [2.5 — 5.5] um. Figure 4 plots the
normalized spectral sensitivity of the acquisition system, which includes the spectral responses
of the camera, the lens objective, the air absorption, and the IR lamp emission. We are not
able to differentiate the different contributions with the available equipment. However, the
absorption peak at A = 4300 nm is the signature of the COg in the air [14]. In this tutorial,
polychromatic light integrated over the spectral range of the camera is used to increase the
SNR.

The signal measured by each pixel, Upix(t), is directly proportional to the total flux @i ()
it receives. Depending on the received flux, each pixel generates an electrical signal: Upix =
PpixProt, With ppix a proportionality factor specific to each pixel since they are all slightly
different (size, noise, offset, ...). To compensate for these differences, we perform a non-
uniformity correction (NUC) before starting the measurements [15]. The method consists in
taking several images of a black body covering the entire field of view of the camera. After
calculating the temporal and spatial average of the signal, a correction coefficient is applied
to each pixel. This operation is performed by the software of the camera (Altair).

In addition, the IR camera converts the voltage signal of each pixel in digital levels (DL).
Since the camera has a dynamic range of 14 bits, the pixel value is in the range |0 ; 2'4-1] DL.
If the incident flux is too intense, the pixel is saturated, and its value is theoretically 16 383
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Figure 4: Spectral sensitivity of the acquisition chain, measured by scanning the wavelength
with the monochromator. The peak around A = 4300 nm corresponds to the COg2 absorption.

DL. However, the upper limit of the camera operating range is 14 000 DL. Beyond that, the
incident flux and pixel value are no longer proportional, and the signal should be saturated.
In addition, below 2 000 DL, the camera does not operate optimally either. Therefore, always
be sure to work in the |2 000 - 14 000] DL range.

Finally, a Stirling cools the camera to a temperature of Toaym ~ 79 K. As long as the camera
is not properly cooled, the recorded signal is not stable enough. Figure 5 shows the drift of
the measured signal over time. We propose to determine this drift by placing an ambient
black body at 30 cm in front of the camera and regularly recording the measured signal. The
sensor is only stable after two hours of operation: the measured signal at ¢ = 200 min varies
by more than 5% compared to the beginning of the measurement. That shows the impor-
tance of letting the camera cool down for at least two hours before making the measurements.
Working with modulated signals reduces the impact of the camera drift on the results.
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Figure 5: Drift of the signal recorded by the camera over time, measured on a ROT of 50x50
pixels.
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Mechanical chopper settings

In this setup, the camera is synchronized with the mechanical chopper to record one frame
when the chopper cuts the IR beam, and another when the light passes through the sample
[16]. The only requirement for the chopper frequency f. is f. > fr to properly remove the
proper emission of the sample. We choose f. = 11 Hz, and the camera acquisition frame rate
is feam = 22 Hz. The output signal of each pixel of the camera is given in the equation 7:
the IR transmitted signal is only measured every other frame, at the frequency f.. C(t) is the
chopper rectangular wave function equals to 1 when the IR beam passes through the sample,
and 0 when it is cut. The next section presents the double-demodulation method, applied on
the images recorded by the camera.

Upix(t) = ppix [Polo(1 + KAT cos(27 frt))C(t) + E(T,t)) (7)
C(t) = 0, when the chopper cuts the IR beam (8)
C(t) = 1, when the IR beam passes through the sample (9)

4 Double-demodulation method applied on images

As mentioned in the introduction, we use the two-image method, subtracting the proper
emission thanks to the synchronization of the camera with the chopper.

The presented methods allow us to demodulate simultaneously the signal recorded by all the
pixels of the camera. We do not work in real time but post process the films recorded during
the experiment.

4.1 Proper emission subtraction: the two-image method

As mentioned, the camera is synchronized with the mechanical chopper to discriminate the
transmitted flux ®I'(¢) from the parasitic signal E(t). The camera successively records one
frame when the chopper lets the light passing through the sample (Uyy,) and another when it
cuts the light beam (Uy,g). The frequency of the camera is feam = 2f. with f. the chopper
frequency, we define 7. = 1/f.. The difference between two consecutive frames results in
equation 10.

Uon (t) — Uogt(t + %) = poix®oLo[1 + KAT cos(27 f11)] + Ares (10)

The term A, is the residuals of the parasitic radiations and noise measurement after the
subtraction: Aes = E(t) — E(t + % ). These residuals are negligible compared to the ther-
motransmittance signal, providing some conditions: the proper emission must be constant
between two consecutive frames, otherwise the residual Ayeg depends on the temperature, and
the source demodulation is not correctly performed. This is why the chopper frequency, f.,
is set much higher than the thermal frequency, fr. The first experimental measurement is to
check if the proper emission is correctly removed with the chosen frequencies (fr, f¢).
Figure 6 shows the two-image method on two consecutive images recorded by the IR camera,
when the IR flux passes through the sample (a) and when it is cut by the chopper (b). The
subtraction of the two images results in frame (c¢). As mentioned in section 3, the camera
has a limited dynamic range of 14 bits. Since all the parasitic radiations are added to the
useful IR transmitted flux, the remaining signal after two-image subtraction may be weak. So,
we understand the interest of maximizing the IR flux compared to the unwanted radiations.
Several strategies are possible:

Tutorial 11: Thermal imaging in semi-transparent media - page 8

238/339



METTTI 8 Advanced School Tle d’Oléron, France,
Thermal Measurements and Inverse Techniques Sept.24%" - Sept. 29", 2023

Transmitted IR beam

+ parasitic radiations DL Parasitic radiations DL
<000 4000
100 100
ng 1 6000 % 3000
% 200 % 200
g 4000 A 2000
300 2000 300 1000
400 0 400 0
100 200 300 400 100 200 300 400
el -
Peltier module PLxeis pixels
edges (a) (b)
Transmitted IR beam DL 4  Pparasitic Transmit;ed signal
3 radiations Parasitic radiations
100 000 ®
0 E
= S|
# 200 3
A 2000 §
300 &
400 - ax O /I‘ ------- ':-2-.0--r.r-]-s. ........ }:\ :
100 200 300 400 Chopper Chopper
pixels closed open
(c) (d

Figure 6: Images of (a) IR transmitted beam with proper emission, Uoy (%), (b) proper emission
and parasitic radiations, Uyg(t + %), and (c) IR beam after proper emission subtraction,
Uon(t) — Uog(t + % ). (d) Ilustration of the two-image process.

e As we cannot influence the proper emission of the sample, we must operate on the IR
incident beam. One possibility is to concentrate its power. The higher the intensity
of the transmitted beam, the more we can decrease the integration time of the camera
and, thus, the component of the proper emission.

e The wavelength of the IR beam is chosen where the measured IR transmitted beam is
maximal. This wavelength depends on the camera sensitivity and the transmittance of
the sample.

e We can use an IR bandpass filter between the sample and the camera. That eliminates
the components of the proper emission outside the filter. The filter must be adapted to
the wavelength of the IR beam.

Using a filter generates parasitic reflections, attenuates the transmitted IR beam, and must
be changed according to the wavelength. As a consequence, we will focus on the first two
points for the following. Finally, after the two-image subtraction, we get the signal Upix r(t)
at the chopper frequency f..

UpiX,IR(t) = ppixq)oro[l + kAT COS(QWth)] —+ Ares (11)

4.2 Demodulation of the transmitted signal

A numerical demodulation is used to obtain the module and phase from the thermotrans-
mittance. A Fast Fourier Transform (FFT) algorithm in Matlab is employed to process the
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image. These, in each pixel of the image we obtain the module:
|AUpix,ir (w = 27 f7)|| = ppixPol ok AT, (12)
and the thermotransmittance phase
arg(AUpix,m (w = 27 f1)) = ¢ (13)

These two quantities can be used to estimate the heat diffusivity, convective coefficient, or to
calibrate the thermotransmittance coefficient s over the spectral range of the camera. The
demodulation based on FFT requires to record at least 10 periods to ensure a sufficient spectral
resolution in the process data. The longer the experiments lasts, the better the precision of
the algorithm is.

5 Heat transfer modeling of a thin wafer in cylindrical coordi-
nates

This section studies the heat transfer in a thin silicon wafer heated at its edges by a ring-shaped
Peltier module. We calculate the temperature variation AT in the sample, and determine the
operating modulation frequency fr.

Sample

Peltier module
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TT——— Thermocouple
vz
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Figure 7: Illustration of the heat transfer problem. (a) 3D view of the Peltier module and
the sample heated to a modulated temperature T,(t). (b) Cross-sectional view with boundary
conditions. (c¢) Image of the Peltier module.

5.1 Solving the heat transfer equation

The shape of the heating system is important to let the