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FOREWORD		
The	 8th	 edition	 of	 the	 Advanced	 Autumn	 school	 ‘Thermal	 Measurement	 and	
Inverse	 Techniques’	 is	 run	 by	 the	 METTI	 Group	 (MEsures	 en	Thermique	 et	Techniques	
Inverses)	that	constitutes	 a	 division	 of	 the	 Société	 Française	 de	 Thermique	 (SFT,	 French	
Heat	 Transfer	Society).	

*	*	*

Finding ‘causes’ from measured ‘consequences’ using a mathematical model linking the two is 
an inverse problem. This is met in different areas of physical sciences, especially in Heat 
Transfer. Techniques for solving inverse problems as well as their applications may seem 
quite obscure for newcomers to the field. Experimentalists desiring to go beyond traditional 
data processing techniques for estimating the parameters of a model with the maximum 
accuracy feel often ill prepared in front of inverse techniques. In order to avoid biases at 
different levels of this kind of involved task, it seems compulsory that specialists of 
measurement inversion techniques, modelling techniques and experimental techniques share 
a wide common culture and language. These exchanges are necessary to take into account the 
difficulties associated to all these fields. It is in this state of mind that this school is proposed. 
The METTI Group (Thermal Measurements and Inverse Techniques), which is a division of the 
French Heat Transfer Society (SFT), has already run or co- organized seven similar schools, in 
the Alps (Aussois, 1995 and 2005), in the Pyrenees (Bolquère-Odeillo, 1999), in Brasil (Rio de 
Janeiro, 2009), in Bretagne (Roscoff, 2011), in Pays Basque (Biarritz, 2015) and in 
Porquerolles island (Porquerolles 2019). For this eighth edition the school is again open to 
participants from the European Community with the support of the Eurotherm Committee.

*	*	*

Two	books	are	distributed	at	the	beginning	of	the	school.	Volume	1	contains	the	texts	used	as	
supports	for	the	lectures	and	Volume	2	contains	the	texts	used	as	supports	for	the	tutorials.	
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Tutorial 1: Multispectral pyrometry

N. Horny1, T. Duvaut1, T. Pierre2

1 ITheMM (EA 7548), Univ. de Reims Champagne-Ardenne, 51100 Reims, France. 

E-mail: nicolas.horny@univ-reims.fr; thierry.duvaut@univ-reims.fr
2 Univ. Bretagne Sud, UMR CNRS 6027, IRDL, F-56100, Lorient, France. 

E-mail : thomas.pierre@univ-ubs.fr

Abstract. This tutorial deals with the multispectral pyrometry for the temperature and emissivity
estimation. This is a contactless technique where the surface radiative emission is recorded by an 
appropriate sensor, which delivers a signal proportional to the radiation. The latter, measured within a 
certain wavelength bandwidth, depends on the surface temperature. A spectral treatment of the signal 
offers the possibility to select one or more narrow ranges to estimate the temperature and/or the 
emissivity. This tutorial is divided in three parts: the first one presents briefly generalities about radiative 
transfer, emissivity and its dependencies, and the mono-, bi-, and multispectral pyrometry principles 
with the algorithms used to perform the estimation; the second part concerns the detailed presentation 
of a pyrometer and its calibration; and the third part is dedicated to the multispectral pyrometry, that is 
to say with more than two signals. 

Nomenclature

Latine letters 
c light speed, m∙s-1 
h Planck constant, J∙s 
H constant 
k Boltzmann constant, J∙K-1

K amplification factor 
L radiance, W∙m-2∙µm-1∙sr-1 
p parameter 
S signal, arbitrary unit 
T temperature, K 
X sensitivity 

n Flux density, 𝑊.𝑚−2

C1 Constant Planck's law, W.m2 

C2 Constant Planck's law, m.K 

Greek letters 

 emissivity 

 wavelength, µm or m

 reflectivity 

 Stefan-Boltzmann constant, W∙m-2∙K-4 

 noise or standard deviation 

 transmittivity 

Indices and subscripts 
T temperature 
noise noise 

 wavelength
atm atmosphere 
eff effective 
env environment 
i index 
s sensor 
0 blackbody 
‘ directional

Introduction

This tutorial concerns the contactless pyrometry, whose basics are the following: an 
appropriate sensor aims at a surface, records a radiative flux coming from its direction, and 
delivers a signal (a current for example) proportional to this flux. Among other parameters, the 
latter depends on the surface temperature and is defined in a certain wavelenght range. As 
previously mentioned, the pyrometry can be used for two different aspects. The first aspect is 
practically to perform absolute flux, temperature and/or emissivity measurements itselves. It 
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only implies the use of the basic radiometric equations [1] and the Planck law [2]. The second 
aspect is different from the first one since it is based on variation of the measured signal. It 
concerns the material intrinsic properties characterisation by combining the previous relations 
with the heat equation for example. Those two aspects can be associated, but, in most 
applications, both the sensor calibration with a blackbody and the Planck law are necessary. 
 
The principal issue is the surface changing emission feature, namely the emissivity, which can 
vary versus the wavelength [3], the direction [4], the temperature [5], or the surface state [6] to 
name the major. Unfortunately, the experience shows that combination of two or more 
dependencies is possible [3]. And what happens to the emissivity is even true for the other 
radiative properties, the reflectivity, the absorptivity, and the transmittivity [1]. The emissivity 
variation problem is present whatever the pyrometric measurement technique. During radiative 
measurement with a broadband pyrometer, such as short wave (SW), middle wave (MW) or 
long wave (LW) infrared camera, the collected flux is not spectric, it is integrated along the 
whole spectral bandwidth. And the software usually requires an effective emissivity input to get 
the temperature, meaning a greybody assumption, which is a strong assumption. If it is not the 
case and the radiative properties changes with respect to the wavelength, the error would be 
difficult to evaluate. Unfortunately, post-treatment with a spectral emissivity model neither can 
be considered. The bispectral pyrometry manages the emissivity problem but leads to other 
questions. 
 
The principle of the bispectral pyrometry is to perform radiative measurements at two different 
wavelengths strictly monochromatic as close as possible to each other in order to approve the 
greybody assumption, but not to close not to increase the temperature theoretical uncertainty 
[7,8]. This methodology is subjective since a compromise must be found. Therefore, several 
studies deal between this compromise and the definition of a more objective methodology [9]. 
The wavelengths choice points out also the signals ratio criterion [7,8]. If the greybody 
assumption is valid, a two equations two unknowns system is solved to calculate 
simultaneously both the temperature and the emissivity or to estimate them through a least-
square method.  
 
Numerous authors work on the multispectral pyrometry [10], that is to say with more than two 
wavelengths. Increase the spectral bandwidth tends to make the greybody assumption less 
and less applicable. The system to solve is always a n equations n+1 unknowns system, 
namely the n emissivities and the temperature, which is impossible to solve. One possibility is 
to use a mathematical function (polynomial, exponential) or a physical function to represent 
the behaviour of the emissivity with respect to the wavelength. Litterature presents numbers 
of physical functions (Maxwell, Hagen-Rubens, e.g.) [1]. Some emissivity models exist also for 
temperature dependency [11] or combine both the spectral and temperature dependencies. 
 
The previous discussions are mainly true when the environment and the atmosphere (i.e. the 
space between the material and the sensor) contributions regarding the measured signal by 
the sensor is negligible. It is true for two reasons: the material temperature makes their 
temperature negligible, and when the material emissivity tends to unity. On the contrary, when 
the material emissivity tends to zero (aluminum, copper e.g.), the part of the received flux by 
the sensor coming from the environment and the atmosphere and reflected by the material 
cannot be negligible. Surface emissivity of the material can also change due to chemical 
reactions that can occur during high temperature measurements, such as oxidation [12], 
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requiring sometimes important experimental condition modifications and the use of vacuum or 
transparent inert gas (argon, helium). 
 
This tutorial presents the basics of the multispectral pyrometry for the temperature and 
emissivity determination in the case of high and constant temperature measurements of 
surfaces of various surface state. During experiments, the environment and the atmosphere 
are assumed transparent and their influences negligible. The present text is composed of three 
parts. The first one deals with generalities about the mono-, the bi-, and the multipectral 
pyrometry: the equations are presented and the influence of the radiative properties and of the 
surrounding is discussed. The second part describes the experimental apparatus composed 
of a high temperature element with different samples, a spectrometer and a blackbody for the 
calibration. Finally and to go further, the third part presents the multispectral pyrometry, the 
methodology of the wavelengths selection, some emissivity models, and the limitations of the 
methods. 
 
Several termonologies exist in pyrometry. The literature mentions indifferently bispectral or bi-
coulour pyrometry for the temperature/emissivity estimation with the help of two signals, or 
multiwavelength or multi-colour pyrometry with more than two signals. In this tutorial, the terms 
spectral or wavelength will be prefered. 
 
 

1. Generalities on multispectral pyrometry 
 

The radiation that leaves a surface of temperature T and emissivity ’(,T) is the sum of two 
terms: the part emitted from the surface itself and the part coming from the environment at 

temperature Tenv reflected by the surface of bidirectional reflectance ’’(,T). Considering the 
radiation received by the sensor, these two contributions are weighted by the atmosphere 

transmittivity (,Tatm) and one must also consider the atmosphere self-emission of 
temperature Tatm (see J.-C. Krapez/ T. Pierre lecture for more information or [8]). 
 
In the case of an opaque and isotropic surface and of a transparent atmosphere, the general 
thermometry equation is commonly written: 
 

 𝐿𝑠(𝜆, 𝑇𝑒𝑓𝑓) = 𝜀′(𝜆, 𝑇)𝐿
0(𝜆, 𝑇) + [1 − 𝜀′(𝜆, 𝑇)]𝐿0(𝜆, 𝑇𝑒𝑛𝑣) (1.1) 

 
where L0 is the blackbody radiance given by the Planck law (1.2) in which h = 6.62 × 10-34 J∙s, 
k = 1.38 × 10-23 J∙K-1, and c = 3 × 108 m∙s-1 are the Planck constant, the Boltzmann constant, 
and the light speed, respectively. 
 

 𝐿0(𝜆, 𝑇) =
2ℎ𝑐2𝜆−5

𝑒
ℎ𝑐
𝑘𝜆𝑇−1

 (1.2) 

In relation (1.1), Teff is an effective temperature obtained from the total radiation. An effective 
emissivity can also be introduced by: 
 

 𝐿𝑠(𝜆, 𝑇𝑒𝑓𝑓) = 𝜀𝑒𝑓𝑓
′ (𝜆, 𝑇𝑒𝑓𝑓)𝐿𝑠

0(𝜆, 𝑇𝑒𝑓𝑓) (1.3) 

 
An example is given in Figure 1 representing the theoretical radiations calculated with equation 
1.1 considering a radiation emitted from a surface at temperature T = 423.15 K (150 °C) and 
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constant emissivity ’ = 0.5 and an environment at temperature Tenv = 298.15 K (25 °C) in the 

spectral range 1 = 8 µm – 2 = 12 µm. The quantities theoretically measured by the sensor 
are the areas beneath the curves in Figure 1 (down to the horizontal abscissa), which are the 
integration of equation (1.1) with respect to the wavelength (1.4). In relation (1.4), the surface 
and the environment radiations are represented by the grid and the right-slanted lines area in 
Figure 1, the total radiation being the sum. 
  

 ∫ 𝐿𝑠(𝜆, 𝑇𝑒𝑓𝑓)𝑑𝜆
𝜆2
𝜆1⏟          

𝑡𝑜𝑡𝑎𝑙

= ∫ 𝜀′(𝜆, 𝑇)𝐿0(𝜆, 𝑇)𝑑𝜆
𝜆2
𝜆1⏟              

𝑠𝑢𝑟𝑓𝑎𝑐𝑒

+ ∫ [1 − 𝜀′(𝜆, 𝑇)]𝐿0(𝜆, 𝑇𝑒𝑛𝑣)𝑑𝜆
𝜆2
𝜆1⏟                  

𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡

 (1.4) 

 
The plot shows that 81.5 % of the radiation is the surface proper emission the complement 
coming from the environment. The effective temperature, or the blackbody temperature, of the 
total radiation is Teff = 372 K (100 °C), which is obtained by solving: 
 

 𝐿𝑠(𝑇𝑒𝑓𝑓) = ∫ 𝐿𝑠(𝜆, 𝑇𝑒𝑓𝑓)𝑑𝜆
𝜆2
𝜆1

 (1.5) 

 
This effective temperature have no meaning, but allows quantifying the influence of both the 
emissivity and the environment temperature regarding the surface temperature. In this 
example, there is a difference of about 12 % between the real surface temperature and the 
effective one. This difference changes with the surface emissivity and the environment 
temperature.  
 
As an example, Figures 2 and 3 plot the evolutions of the total radiance L(Teff) and of the 
effective temperature Teff of equation (1.4) versus surface temperature T and for different 
surface emissivities. The chosen values are the following: 

• T = 373 K to 1 073 K 

• ' = 0.2 to 1. 

• Tenv = 298 K. 
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Figure 1. Surface, environment, and total radiations. 
 
These plots really present the importance and the influence of these two parameters and the 
errors that could be involved. Considering the total radiation measured by the sensor, it can 
happen that the major part belongs to the environment due to the weak emissivity value. The 
principal issue is that it is not possible to separate both contributions in equation (1.4). 
However, among all the existing commercial pyrometers, in the case of spectral broadband 
sensors, different possibilities of tuning are available functions of the applications. 
 

  
Figure 2. Evolution of the total radiance versus 

surface temperature for different surface 
emissivities. 

Figure 3. Evolution of the effective temperature 
versus surface temperature for different surface 

emissivities. 

 
Some pyrometers (infrared, thermal guns) only offer the possibility to set the emissivity, which 
is the effective 𝜀𝑒𝑓𝑓

′  (1.3) since it is not possible to separate the surface from the environment 

radiations (1.3). These pyrometers aim an area, collect the radiation from it and typically, an 
effective temperature is put up functions of the set emissivity. If both the surface and the 
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environment temperatures are known, a first approximation commonly used allows to consider 
that the surface emissivity is given by: 
 

 𝜀′ ≅
𝜀𝑒𝑓𝑓
′ 𝑇𝑒𝑓𝑓

4 −𝑇𝑒𝑛𝑣
4

𝑇4−𝑇𝑒𝑛𝑣
4  (1.6) 

 
assuming: 
 

 𝐿0(𝑇) =
𝜎𝑇4

𝜋
 (1.7) 

 

where  = 5.67 × 10-8 W∙m-2∙K-4 is the Stefan-Boltzmann constant. 
 
Other pyrometers, such as the bolometric thermal imaging guns, have the possibility to set an 
emissivity and the environment temperature Tenv. In this case, it is the real surface emissivity 

’ since it is possible to separate the surface from the environment radiations. The temperature 
indicated by the gun is the real surface one. These imaging guns usually put up a temperature 
field image of the screen. However, it is possible to get from a software the signal proportional 
to the radiation collected by the sensor. 
 
For efficient pyrometers, such as the infrared camera equipped with a cooled sensor with the 
emissivity and the environment temperature, user has the possibility to set the temperature of 
the atmosphere, and, if the latter is participating, its distance from the sensor and its 
transmittivity such as needed in equation (1.1). The signal is given in digital level unit (DL) or 
in temperature if the calibration has been performed. 
 
The great drawback of these spectral broadband pyrometers is that they require a beforehand 
approximate knowledge of the emissivity of the surface. The radiative properties tuned in these 
pyrometers are constant values. Therefore, it is a major error source since these properties 
are liable to change along the whole spectral range (we have already mentioned in the 
introduction the other possible dependencies of the radiative properties). This error source is 
all the more important that the emissivity is weak and the environment temperature is close to 
the surface temperature. Numerous applications such as in building domain encountered this 
type of issue. The problem can be lower during high temperature measurements, namely when 
the environment temperature becomes negligible compared with the surface one, but still 
exists. The bispectral pyrometry proposes some possibilities to get rid of these multiple 
unwanted effects. 
 
1.1. Simulation of radiometric signal (T1 - Exercise 1) 
 
In this part, simulations of radiometric signals (RS) are built and used to test the three 
mentioned pyrometry technics (see Figure 4). Two spectral ranges are chosen: the shortwave 
(SW) between 0.9 µm and 1.7 µm representing small commercial spectrometers and the 
middle wave (MW) between 3 µm and 4 µm simulating MW infrared camera. Two temperatures 
of 800 K and 1 300 K are also chosen to represent different configurations. It gives four sets 
of experimental data, which can be noised or not. 
In this example, a linear model of emissivity is chosen to simulate a variation of emissivity. It 
allows to quantify the influence of emissivity uncertainties on temperature. 
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Figure 4. Experimental data simulations. 

 
On these examples, the RS reflected part could be neglected contrary to the cases of small 
temperature of the sample and for higher wavelengths. Sensitivities are numerically calculated 
and plotted with different definitions (1.8)-(1.10) in Figure 5. 
 

Sensitivity: 𝑋𝑝 =
∂𝐿

∂𝑝
 (1.8) 

 

Relative sensitivity: 𝑋𝑝𝑅 = 𝑝
∂𝐿

∂𝑝
 (1.9) 

 

Normalized sensitivity: 𝑋𝑝𝑁 =
𝑝

𝐿

∂𝐿

∂𝑝
 (1.10) 

 
These sensitivities are used in the next parts to identify temperature and emissivity. One notes 
that the first sensitivity (1.8) is used in minimisation algorithm. A strong difference of order of 

magnitude could pose a problem such as bad condition number of (XTX)-1 matrix, but it can 

be solved easily by using normalised parameters (i.e. p1 = T/T0 and p2 = /0). 
 
These sensitivities are very useful to check the validity of estimation. It allows to estimate the 
radiance error propagation to the parameters (variance amplification factor): 

 
 𝜎𝑝 = 𝑑𝑖𝑎𝑔[(𝑋

𝑇𝑋)−1]𝜎𝑛𝑜𝑖𝑠𝑒 (1.11) 

 
where X is the sensitivity matrix of the chosen fitting parameters and noise is the variance of 
the observable. It is also possible to estimate the total uncertainty including the uncertainty of 

the supposed known parameter supp known of the experience [13] (wavelength, ambient 
temperature, calibration factors…): 
 

 𝜎𝑠𝑢𝑝𝑝 𝑘𝑛𝑜𝑤𝑛 = −(𝑋
𝑇𝑋)−1𝑋𝑇𝑋𝑐 𝑒𝛽𝑐 (1.12) 
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where Xc is the sensitivity matrix to the parameters supposed known and 𝑒𝛽𝑐 is the absolute 

uncertainty vector of the supposed known parameters. 
 

 
Figure 5 Sensitivities to temperature and emissivity. 

 
In Figure 5, the normalised sensitivity to emissivity is 1 because the model is directly 
proportional to emissivity (it is not the case when the reflected part is not negligible). 
In mono and bispectral pyrometry, the amplification factor, which evaluates the temperature 
sensitivity to an error on emissivity, could be calculated, it corresponds to the term 
(𝑋𝑇𝑋)−1𝑋𝑇𝑋𝑐 in the equation (1.12). 
 
For multispectral pyrometry, an estimation of uncertainties is made assuming the noise 
corresponds to the residuals (in simulations, noise is 0.5 % of the maximum signal). Another 
parameter useful to check the validity of measurement is the correlation matrix which non-
diagonal terms represent the angle between sensitivity vectors. 
 
1.2. Monospectral pyrometry (T1 - Exercise 2) 
 
The previous simulated data are integrated over the SW or MW ranges and a minimisation 
with temperature as parameter is achieved with Nelder-Mead (NM) (fminsearch Matlab 
function) and Gauss-Newton (GN) algorithms for comparison [14]. Temperature identifications 
are tested with different initial values. The relative amplification factor K (1.13) is used to 
estimate temperature uncertainties (1.14) [13]. 
 

 𝐾 =
𝜀

𝑇
(𝑋𝑇𝑋)−1𝑋𝑇𝑋𝑐 (1.13) 

 

 
Δ𝑇

𝑇
= 𝐾

Δ𝜀

𝜀
 (1.14) 
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In the examples, the amplification factor is between 0.08 and 0.3. As an example, an 
amplification factor of 0.2 gives an error of 16 K for an uncertainty of 10 % on the emissivity at 
800 K and of 26 K at 1 300 K. 
 
The comparison between NM and GN algorithms allows to see the importance of initial 
parameters on final value (see temperature value at first iteration in Figure 6). 
 

 
Figure 6. Result of monospectral pyrometry with simulated data. A bias is clearly identified but not 

detectable. 
 

On the example in Figure 6, the two figures on the left present the influence of a bias in 
hypothesis, even though these curves are not available in monospectral pyrometry. With the 
GN algorithm, due to the flat cost function, a started point at low temperature gives a first 
correction temperature at a value higher than 10 000 K, which could be fatal in some cases. 
 
1.3. Bispectral pyrometry (T1 - Exercise 3) 
 
For the bispectral pyrometry, the surface temperature is determined from radiations measured 
by a sensor at two different wavelengths, especially as monochromatic and as close as 
possible. The wavelengths vicinity condition lays on the same emissivity assumption for both 
measurements. Theoretically, the two measured signals have the following expression (1.15) 
where i = 1, 2. 
 

 𝑆𝑖
𝑡ℎ = ∫ [𝜀𝑖

′(𝜆𝑖, 𝑇)𝐿
0(𝜆𝑖, 𝑇) + [1 − 𝜀𝑖

′(𝜆𝑖, 𝑇)]𝐿
0(𝜆𝑖, 𝑇𝑒𝑛𝑣)]𝑓𝑖(𝜆)𝑑𝜆

∞

0
 (1.15) 

 

where fi() is a spectral function estimated by calibration, which depends on the transmittivity 
of the optical elements (filters, mirrors, gratings, optical fibre, e.g.) and on geometric factors 
(view factors, surfaces, mainly). This function can be a constant (1.16) when using a 
spectrometer or have a Gaussian shape (1.17), which is usually the case when using 
monochromatic optical filters. 
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 𝑓𝑖(𝜆) = 𝐻𝑖 (1.16) 
 

 𝑓𝑖(𝜆) = 𝐻𝑖𝑒
−  
1

2
(
𝜆−𝜆̅𝑖
𝜎𝑖
)
2

 (1.17) 
 
As an example, Figures 7 and 8 present the radiations measured by a bispectral sensor 
considering the same input data as previously. According to relation (1.17), the filters are 

characterized by a central wavelength 𝜆̅, a standard-deviation i, and a amplitude coefficient 
Hi. In the case of Figure 7 and 8, the values are the following: 
 

• 𝜆̅1 = 1.80 µm, 1 = 0.0037 µm, H1 = 0.45 

• 𝜆̅2 = 1.85 µm, 2 = 0.0028 µm, H2 = 0.52 

  
Figure 7. Comparison between the radiations 
measured by the sensor with and without the 

two filters. 

Figure 8. Focus of the different radiations 
measured by the sensor for each wavelength. 

 
Figure 7 shows the significant difference between the radiation collected by the sensor with 
and without the two filters. The ratio between the total area collected without and with the filter 
is about 1 000. Nevertheless, Figure 8 shows that the proportion does not change between the 
surface and the environment radiations, and so is the effective temperature (about 373 K). 
 
The principle of the bispectral pyrometry is to get at first the temperature from an experimental 

signals ratio 𝜉12
exp

=
𝑆1
exp

𝑆2
exp, if the following assumptions are made: 

• environment influence negligible; 

• constant emissivity. 

In this case, equation (1.15) becomes: 
 

 𝑆𝑖
𝑡ℎ = 𝜀𝑖

′ ∫ 𝐿0(𝜆𝑖, 𝑇)𝑓𝑖(𝜆)𝑑𝜆
∞

0
 (1.18) 

 
If the filters are assumed strictly monochromatic and the Wien approximation valid  

(T << 14 000 µm∙K), they are defined by a simple amplitude Hi determined by calibration, and 
relation (1.18) becomes: 
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 𝑆𝑖
𝑡ℎ = 𝜀𝑖

′𝐻𝑖𝐶1𝜆𝑖
−5𝑒

− 
𝐶2
𝜆2𝑇 (1.19) 

 
Thus, the temperature can explicitly be expressed by equation (1.20). Once the temperature 
obtained, the emissivity is easily calculated. 
 

 𝑇 =
𝐶2(𝜆2

−1−𝜆1
−1)

ln[𝜉12
exp𝐻2

𝐻1
(
𝜆2
𝜆1
)
−5
]
 (1.20) 

 
If the filters behave like in relation (1.17) or if one considers the Planck law in place of the Wien 
approximation, the estimation of the temperature and the emissivity is possible by solving the 
criteria (1.21), whatever the Wien approximation is considered or not. 
 

 |𝜉12
exp

−
𝑆1
𝑡ℎ

𝑆2
𝑡ℎ (𝜀′, 𝑇)| = 0 (1.21) 

 
With the same data used in section 1.1, the identification of temperature is done with the 
determination of amplification factor. The use of the two wavelengths ratio implies a great 
influence of the noise. However, either the spectral range of a spectrometer is used and a scan 
in wavelength could smooth the noise [15], or the bandwidth of the filters reduces the influence 

of noise. Figure 9 presents results on SW spectral band data at 800 K for 1 = 1.4 µm and  

2 = 1.5 µm. In this case, the amplification factor (relative to emissivity ratio) is about 1.2. 
 

 
Figure 9. Result of bispectral pyrometry with simulated data. A bias is clearly identified but not 

detectable. 
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1.4. The multispectral (MSP) pyrometry (T1 – Exercise 4) 
 
In this part, the multispectral pyrometry (MSP) is tested with a constant emissivity [16] and with 

a linear wavelength dependency emissivity  = a + b. The emissivity and temperature are 
deduced by using non-linear least-squares based method in order to minimize of the chi-
squared (χ2) criterion, solved by the GN algorithm: 
 

 𝜒2 = ∑ |𝑛𝜆𝑖
exp(𝑇) − 𝑛𝜆𝑖

𝑡ℎ(𝑇)|
2𝑁𝑓

𝑖=1
  (1.22) 

 

where 𝑛𝜆𝑖
exp

 is the radiometric signal measured on the sample. In order to study the quality of 

the minimization, the residuals of minimization are shown. The dispersion of the residuals 
around zero reveals the quality of the MSP estimation. 
 
With MSP, it is possible to retrieved the input parameters (T, a, b). However, the real problem 
is ill-conditioned, it exists a lot of minima, as shown by the valley in Figure 10 (bottom right) 
and so it exits several solutions to the inverse problem. Only a good knowledge of the physical 
problem allowing real assumptions or regularisation with a priori input will gives confident 
results. 
 

 
Figure 10. Result of MSP with simulated data. There is no bias in residues. 

 
 
2. Real experimental data (T2) 
 
In this second part of the tutorial, data from real measurements of radiance coming from 
different samples at different temperatures are blind tested in order to find the temperature. 
The principle of the measurement is showed in Figure 9. This multispectral pyrometry method 
is based on the comparison between the radiance emitted by the sample and by a heat source 
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with known temperature and emissivity , generally a blackbody ( ~ 1), used as reference, in 
the same spectral range. Our reference thermal source is a cylindrical blackbody furnace of 
reference HGH RCN900. 
 

 
Figure 9. Experimental device. 

 
An enclosure allows to heat the metallic samples (small circular plates of 25 mm diameter and 
3 mm thickness) from ambient temperature up to more than 1 073 K (900 °C). Static 
measurement (P.I.D. regulation) are applied. A hole drilled radially into the centre of each 
sample plate contains a type K thermocouple to allow reference measurement of the plate 
temperature. We observe a good homogeneity of the surface temperature lower than  
3 K. We test different metallic samples (steel, copper, aluminum) with different surface 
conditions (raw, polished, and blackened with a known emissivity paint). 
 
The radiation emitted by the sample or the blackbody is focused on the spectrometer input slit 
by means of two similar out-of-axis parabolic mirrors. The spectra acquisition is successively 
made, and the change of the radiation source is made by rotation of the first mirror. We used 
an infrared Fourier transform spectrometer (Brucker, Invenio R) that allows measurement in a 
spectral range from about 1.25 µm to 25 µm with a resolution of about 2 nm. 
 
The spectrometer does not give directly radiance and a calibration step is needed. The 
calibration process consists in converting the spectrometer DL in experimental radiance by 
collecting the signal from the blackbody at different temperatures. It is performed for different 
blackbody temperatures chosen to obtain emitted powers similar to those of the heated sample 
surface. For example, the power is measured for ten different temperatures of the blackbody 
furnace, from 400 K to 800 K every 10 K. The power from the blackbody furnace is measured 
by the infrared spectrometer. For each wavelength, the result is plotted as function of the 
radiance deduced from the Planck law. The linear regression obtained is the transfer function. 
Each wavelength has its own transfer function. The transfer function is used to convert the 
energy flux from sample, measured by the spectrometer, into radiance. 
 
The aim of this tutorial T2 is to test algorithms of first tutorial T1 with experimental spectrum in 
order to retrieved the temperature. 
 

13/339



 
 
 
 
METTI 8 Advanced School Île d’Oléron, France 

Thermal Measurements and Inverse Techniques Sept. 24th – Sept. 29th, 2023. 
 

 Tutorial 1: Multispectral pyrometry – page 14 

References 
 
[1] R. Siegel, J. Howell, Thermal radiation heat transfer, 4th edition, Taylor & Francis 

Editions, New-York, 2002. 

[2] Max Planck, Ueber das Gesetz der Energieverteilung im Normalspectrum, Annalen der 
Physik, vol. 4, 1901, p. 553. 

[3] Y.S. Touloukian, Thermal radiative properties, Plenum, New York (1970). 

[4] J.-F. Sacadura, Initiation aux transferts thermiques, Ed. Tec&Doc, Paris, 2000. 

[5] F. P. Incropera, D. P. DeWitt, Fundamentals of heat and mass transfer, Fifth Ed., Wiley, 
New-York, 2002. 

[6] J.-F. Sacadura, Les méthodes de mesure des propriétés radiatives, colloque SFT, 
ISITEM Nantes, 1990. 

[7] T. Pierre, B. Rémy, and A. Degiovanni, Microscale temperature measurement by the 
multispectral and statistic method in the ultraviolet-visible wavelengths, J. Appl. Phys., 
103, 034904, 2008. 

[8] J.-C. Krapez, H. Pron, Lecture 5: Measurements without contact in heat transfer: 
principles, implementation and pitfalls, Metti 6 Advanced School: Thermal Measurements 
and Inverse Techniques, volume 1, Biarritz, March 1-6, 2014. 

[9] C. Rodiet, B. Remy, A. Degiovanni, F. Deumerie, Optimisation of wavelengths selection 
used for the multi-spectral temperature measurement by ordinary least squares method 
of surfaces exhibiting non-uniform emissivity, Quantitative InfraRed Thermography 
Journal, 2013, vol. 10, n°2, pp. 222-236. 

[10] T. Duvaut, Comparison between multiwavelength infrared and visible pyrometry: 
Application to metals. Infrared Physics & Technology, 51(4), 292-299. 

[11] M.F. Modest, Radiative heat transfer, Academic Press, Ney-York, 2003. 

[12] L. Dejaeghere, T. Pierre, M. Carin, P. Le Masson, M. Courtois, Development and 
validation of a high temperature inductive furnace dedicated to molten metals 
characterization, High Temperatures High Pressure, 2018. 

[13] Y. Jarny, D. Maillet, Problèmes inverses et estimation de grandeurs en thermique, 
Métrologie thermique et techniques inverses, Cours C1A, Ecole d’Hiver METTI ‘99, 
Presses Universitaires de Perpignan, 1999. 

[14] J. V. Beck, K. J. Arnold. Parameter estimation in engineering and science. James Beck, 
1977. 

[15] B. Bouvry, L. Ramiandrisoa, G. Cheymol, N. Horny, T. Duvaut, C. Gallou, H. Maskrot, C. 
Destouches, L. Ferry, C. Gonnier, Optical pyrometry measurement on oxidized Zircaloy-
4 cladding. Journal of Physics: Conference Series, Vol. 745, No. 3, p. 032103, 2016. 

[16] B. Bouvry, G. Cheymol, L. Ramiandrisoa, B. Javaudin, C. Gallou, H. Maskrot, N. Horny, 
T. Duvaut, C. Destouches, L. Ferry & C. Gonnier, Multispectral pyrometry for surface 
temperature measurement of oxidized Zircaloy claddings. Infrared Physics & 
Technology, 83, 78-87, 2017. 

14/339



METTI 8 Advanced School Île d’Oléron, France 

Thermal Measurements and Inverse Techniques Sept. 24th – Sept. 29th, 2023. 

Tutorial 2: Hot-plate technique – page 1 

Tutorial 2: Thermal characterization by hot-plates 
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3 I2M, UMR CNRS 5295, Université de Bordeaux, F-33405 Talence Cedex, France. 
E-mail: andrzej.kusiak@u-bordeaux.fr

Abstract. This tutorial presents the well-known hot-plate technique dedicated to the thermal
characterization of materials. The experiments are transient, the input data and the observable are, 
respectively, a heat flux, that thermally excites the material, and a local temperature. Both data are 
recorded at the material heated face. The principle of the technique is detailed and the corresponding 
theoretical models are presented with appropriate assumptions. The experimental part of this tutorial is 
divided in three parts: first, the calibration with a known material, then the tests and the parameters 
estimation with materials of different natures. The theoretical models are developed thanks to the 
quadrupole formalism and the Laplace integral transform, and the parameters estimation is performed 
according to the determinist (Levenberg-Marquardt) fashion. 

Nomenclature 

Latine letters 
m

pc thermal capacity, J∙kg-1∙K-1 

Che half heating element heat capacity, 
J∙m-2∙K-1 

e thickness, m 
E thermal effusivity, J∙m-2∙K-1∙s-1/2 
I current, A 
N series terms number  
k thermal conductivity, W∙m-1∙K-1 
rc contact resistance, m2∙K∙W-1 
res residuals 

R electrical resistance,  
s Laplace parameter, s-1 
t time, s 
T temperature, K 
U voltage, V 
Vn Stehfest series terms 
X sensitivity coefficient, K 
z Cartesian position, m 

Greek letters 

 thermal diffusivity, m2∙s-1 

 parameter to estimate 

t sampling time, s 

 sigmoidal function coefficient

 density, kg∙m-3 

 standard deviation, K 

 heat flux, W∙m-2

 Laplace transform of the heat flux 

 digamma function 
𝜃  Laplace transform of the temperature rise 

 pulsation, s-1 
Indices and subscripts 
est estimation 
exp experimental 
ext room 
he heating element 
m per mass unit 
p constant pressure 
0 initial 
* reduced
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Introduction 
 

Generally speaking, the characterization of the physical properties of materials is of great 
importance for evident reasons. Among many examples, let cite the multiphysics numerical 
simulations, which need to be fed by the concerned materials properties in order to predict the 
behavior of an industrial process or a building in use. 
 
In the thermal characterization field, three aspects of the material must be considered at first 
sight: i) if it is a conductor or at the opposite an insulating material; ii) both the temperature 
amplitude and level during its use; and iii) its composition: pure, stratified, composite, porous, 
semi-transparent... Having an a priori answer on these considerations will help to choose a 
type of characterization technique and consequently a theoretical model, which preferencially 
would be purely conductive. 
 
For example, the combination of the classifications proposed by Degiovanni and Jannot in [1] 
and [2] allows the reader to choose an appropriate technique to estimate one or more specific 
parameters for a geometry, a sensor, and a heat stress given, knowing approximately 
beforehand the thermal conductivity range of the material. Both (temperature or heat flux) 
sensor and heat stress can be with or without contact and measurements performed in steady-
state or in transient regimes. 
 
The second mentioned point concerns the temperature application and the temperature level 
reached during the use of materials. It becomes difficult to characterize materials at high 
temperature, as a consequence the physical properties litterature becomes more and more 
scarce when the temperature increases. The problems are not only physical but also technical. 
Let mention some of them: the properties varying strongly with temperature, the phase 
changes, the non-linear radiative exchanges with the environment, the chemical diffusion 
between the tested sample and its holder, the thermocouples operating limits, the surface 
emissivity variation due to oxidation during pyrometry measurements… 
 
If the materials are heterogeneous or porous, chances are that the problem would not be only 
purely conductive but combines convection, radiative transfers, or also becomes a 
multiphysics problem. For example, the radiative and eventually the convective heat transfers 
must be taken into account in the case of aerogels [3]. Let now consider the hemp concrete. It 
is a porous heterogeneous material composed of lime binder, hemp shiv, and also air and 
water when it is not dry. At first sight, when the material is dry, only conduction could be 
sufficient to study its thermal. On the contrary, if the material is not dry anymore, the mass 
transfer equations must be taken into account and consequently a global understanding of its 
thermal behavior requires the knowledge of each component properties [4]. 
 
In this tutorial, we propose to approach the parameter estimation of common materials using 
the hot-plate technique at room temperature. The thermal conductivity range (in S.I. units) is 
set between 10-2 and 100. It is a transient method using a heating element and a thermocouple 
both in contact with the sample. Experimentally, the temperature, named the observable, is 
recorded versus time, which is the variable. The heat flux as input data is also recorded. At the 
same time a purely conductive theoretical model is developed, which gives the evolution of the 
temperature versus time at the same location as the thermocouple. The parameter estimation 
is perfomed by minimization of the sum of the quadratic gaps between the experimental and 
the theoretical temperatures. 
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The first part of this tutorial describes the hot-plate apparatus itself. The theoretical models 
and the possible parameters to estimate are presented in detail in the second part. The third 
part concerns the sensitivity studies and the correlation between the parameters. Experiments 
are presented in the fourth part: first the calibration with a known material (polycarbonate), 
then tests with other materials (cork, cellular concrete, rubber). The parameter estimation using 
the Levenberg-Marquardt algorithm is not explained. 
 
 
1. Presentation of the hot-plate apparatus 
 
There is a huge quantity of works dealing with the hot-plate technique. Figure 1 shows a global 
sketch of a hot-plate with a heating element of electrical resistance R and surface S stuck 
between two identical samples (materials) of thickness e. The heating element is a square 
heating electrical resistance of side 101.6 ± 0.1 mm2 (Minco HK5178R42.9L12A). Insulating 
polyurethane foams and aluminium plates of similar section are placed at the rear face of the 
sample, and then the whole stack is kept hold with four butterfly screws (Figure 2). The clamp 
of the latter is not controlled. To assure strictly the parallelism, some authors used two identical 
heating elements [5], this is not the case in this tutorial. 
 
The heating element delivers a Heaviside type heat flux even if others are possible, this is 
discussed in Appendix 1. Two type K thermocouples are placed at the centre of the cross 
section at the positions z = 0 and z = e and measure the temperatures Texp(0,t) et Texp(e,t), 
respectively. The thermocouples characteristics are the following: 125 µm diameter for the 
wires and 300 µm for the hot junction. At a given time t = t0, a current I flows in the heating 

element, which delivers in each sample a heat flux density (t) by Joule effect. During 
experiments, the rate of heat flow and the temperatures are recorded every 250 ms. The 
temperature Texp(e,t) is only used to evaluate the time validity of the semi-infinite model (see 
section 2.3). 
 

 
Figure 1. Sketch of the half of the hot-plate apparatus including the heating element, the sample 

(material), and a polyurethane foam on the rear side (as samples arrangement is symmetrical, only 
one side is represented). 
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Figure 2. Photo of the complete apparatus 
and of some samples.  

Figure 3. Sketch of the electrical circuit of the 
apparatus. 

 
Four materials are available: polycarbonate, cellular concrete, rubber, and cork. Table 1 
gathers their dimensions, weight, and density. 
 

Table 1. Properties of the tested materials. The weight and dimension uncertainties are 40 mg and  
5 µm. 

material 
weight 

(g) 
thickness 

(mm) 
surface 

(mm2 × 103) 
density 
(kg∙m-3) 

polycarbonate 91.63 7.73 10.02 ± 0.01 1 183 ± 20 

cellular concrete 122.69 19.96 9.98 ± 0.01 615 ± 6 

rubber 207.10 14.22 10.25 ± 0.01 1 421 ± 14 

cork 10.35 4.08 9.95 ± 0.01 255 ± 2 

 
 
2. Hot-plate theoretical models 
 

This part presents the theoretical models considered as the most faithful as possible with the 
experimental conditions and used for the parameter estimation. These models are developped 
with the help of the quadrupole formalism in the Laplace domain, as the time integral transform 
[6]. The quadrupole formalism is very practical in the case of multilayer experiments, where 
lumped bodies, thermal resistance, semi-infinite medium, or even internal source are 
encountered. Two models with their asymptotic behavior are detailed: 

• a finite 1D model with the heating element and contact resistance; 

• a semi-infinite 1D model with and without the heating element and contact resistance. 
These models are compared with a 3D one developed with the help of space integral 
transforms, which is not detailled here. For further information about these methods, the reader 
should refer to references [6,7]. 
 
2.1 Assumptions and heat equation in the material 
 

The heat transfers in the tested materials are assumed 1D along the z-direction, transient, and 
purely conductive. The tested materials are assumed dry and homogeneous, and their physical 
properties are constant in the experiment temperature range. The problem with models of 
higher dimensions is that they must consider new uncertain parameters, such as heat 
exchange coefficients due to the radiative and convective exchanges between the sample and 
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its environment since they have also the possibility to be correlated to the sought parameters 
during parameter estimation. 
 
The heating element is considered purely capacitive of heat capacity Che = 𝜌ℎ𝑒𝑐𝑝,ℎ𝑒

𝑚 𝑒ℎ𝑒 where 

𝜌ℎ𝑒 is its density, ehe is its half thickness and 𝑐𝑝,ℎ𝑒
𝑚  its thermal capacity. The thermal losses 

through the heating element wires are negligeable. The contact resistance rc between the 
heating element and the material is considered. 
 
The heat equation in the tested material with the boundary conditions can be written as: 
 

𝜕2𝑇(𝑧, 𝑡)

𝜕𝑧2
=
1

𝛼

𝜕𝑇(𝑧, 𝑡)

𝜕𝑡
 (2.1) 

−𝑘
𝜕𝑇(0, 𝑡)

𝜕𝑧
= 𝜙(𝑡) (2.2) 

𝜕𝑇(𝑒, 𝑡)

𝜕𝑧
= 0 (2.3) 

𝑇(𝑧, 0) = 𝑇𝑒𝑥𝑡 (2.4) 

 

where  is the thermal diffusivity, k is the thermal conductivity, and Text is the room temperature, 
which is also the initial one. Two boundary conditions are possible in z = e: imposed 
temperature or adiabatic. The first one would be possible if a strong capacitive material such 
as an aluminum block [8] is placed instead of the polyurethane foam, and thus imposes a 
constant temperature during the experiment. The experiment shows that the adiabatic 
condition is more appropriate regarding the insulating properties of the polyurethane foam. The 
convective heat exchange boundary condition is excluded in the case of this experiment, it 
would add an additional coefficient to estimate. The system (2.1)-(2.4) is now expressed in the 
Laplace domain knowing that the Laplace transform F of a function f is defined as: 
 

𝐹(𝑧, 𝑠) = 𝐿[𝑓(𝑧, 𝑡)] = ∫ 𝑓(𝑧, 𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0

 (2.5) 

 
where s is the Laplace parameter, f(z,t) can be either the temperature difference T(z,t) - Text or 

the heat flux density (t). The new system is: 
 

𝑑2𝜃(𝑧, 𝑠)

𝑑𝑧2
=
𝑠

𝛼
𝜃(𝑧, 𝑠) (2.6) 

−𝑘
𝑑𝜃(0, 𝑠)

𝑑𝑧
= 𝛷(𝑠) (2.7) 

𝑑𝜃(𝑒, 𝑠)

𝑑𝑧
= 0 (2.8) 

 

with (z,s) = L[T(z,t) - Text] and (s) = L[(t)]. 
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2.2. Finite 1D model 
 
The solution of the differential equation (2.6) is: 
 

𝜃(𝑧, 𝑠) = 𝜃1𝑒
−𝑞𝑧 + 𝜃2𝑒

𝑞𝑧 (2.9) 

 

where 1 and 2 are two constants defined thanks to the boundary conditions and q2 = s/. 
However, considering only the material is not sufficient, the heating element must be taken 
into account and eventually the thermal contact resistance between them. Therefore, the 
quadrupole formalism is a good tool to work with multilayer stack. The system heating element 
/material in the global case where a contact resistance cannot be negligible can be written as 
equation (2.10). 
 

[
𝜃(0, 𝑠)

𝛷(0, 𝑠)
] = [

1 0
𝐶ℎ𝑒𝑠 1

]
⏟      

ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

[
1 𝑟𝑐
0 1

]
⏟    

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒

[
𝐴 𝐵
𝐶 𝐷

]
⏟    
𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

[
𝜃(𝑒, 𝑠)

𝛷(𝑒, 𝑠)
] 

(2.10) 

𝐴 = 𝐷 = 𝑐𝑜𝑠ℎ(𝑞𝑒) (2.11) 

𝐵 =
𝑠𝑖𝑛ℎ(𝑞𝑒)

𝑘𝑞
 (2.12) 

𝐶 = 𝑘𝑞 𝑠𝑖𝑛ℎ(𝑞𝑒) (2.13) 

 

where (0,s), (0,s), (e,s), and (e,s) are, respectively the Laplace transforms of temperatures 
and heat fluxes at the location z = 0 and z = e. The first 2 × 2 matrix represents the purely 
capacitive heating element where Che is the half of the heat capacity of the heating element 
divided by its area (the setup is symmetrical with respect to the plane z = 0). The second  
2 × 2 matrix corresponds to the thermal contact resistance (on a unit area basis) between 
heating element and material sample, and the third 2 × 2 matrix is associated to the material 
sample. The equation (2.10) is an approximation, which works for materials of thermal 
conductivity greater than the polyurethane one. Indeed, in this case, the adiabatic condition 
would not be that relevant, thus a more appropriate quadrupole model would be the following: 
 

[
𝜃(0, 𝑠)

𝛷(0, 𝑠)
] = [

1 0
𝐶ℎ𝑒𝑠 1

]
⏟      

ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

[
1 𝑟𝑐
0 1

]
⏟    

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒

[
𝐴 𝐵
𝐶 𝐷

]
⏟    
𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

[
𝐴𝑖 𝐵𝑖
𝐶𝑖 𝐷𝑖

]
⏟    

𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑚𝑎𝑡

[
0

𝛷(𝑒 + 𝑒𝑖, 𝑠)
] 

(2.14) 

 
With the boundary condition (2.8), equation (2.10) becomes: 
 

𝜃(0, 𝑠) =
1 + 𝑡𝑎𝑛ℎ(𝑞𝑒) 𝑘𝑞

𝐶ℎ𝑒𝑠 + 𝑡𝑎𝑛ℎ(𝑞𝑒) (𝑟𝑐𝐶ℎ𝑒𝑠 + 1)𝑘𝑞
𝛷(0, 𝑠) (2.15) 

 

In equation (2.15), the thermal excitation 𝛷(0, 𝑠) = 𝛷0/𝑠  where  is the level of the power 
step dissipated by the half heating element on a unit area basis, can be expressed in different 
ways (see Appendix 1). The asymptotic behavior of equation (2.15) for the long times (t → ∞ 
and s → 0) is given (see Appendix 2) by: 
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𝜃(0, 𝑠) = 𝛷0 [
1

𝑠2(𝐶ℎ𝑒 + 𝜌𝑐𝑝
𝑚𝑒)

+
𝜌𝑐𝑝

𝑚𝑒𝑟𝑐

𝑠(𝐶ℎ𝑒 + 𝜌𝑐𝑝
𝑚𝑒)

] (2.16) 

 
And in the time domain, equation (2.16) becomes, for a zero contact resistance: 
 

𝑇(0, 𝑡)
𝑡→∞

=
𝜙0

𝐶ℎ𝑒 + 𝜌𝑐𝑝
𝑚𝑒
𝑡 + 𝑐𝑡𝑒 (2.17) 

 
This expression shows a linear behavior of the temperature versus time until the influence of 
the other directions (2D and/or 3D) becomes non-negligible. The slope is inversely proportional 
to the heat capacity of both the heating element and of the material. Therefore, it is important 
to know as good as possible Che through a calibration procedure. 
 
To compare the theoretical temperature (2.15) with the experimental one, a Laplace to time 
inversion is necessary: 
 

𝑇(𝑧, 𝑡) = 𝐿−1[𝜃(𝑧, 𝑠)] + 𝑇𝑒𝑥𝑡 (2.18) 
 
Tables of conversion are available [9] to get back to the time domain for some relations. 
However, numerical inversion programs are also available. This is discussed in Appendix 1. 
 
2.3. Semi-infinite 1D model 
 
When the material is considered semi-infinite, the last two matrices 2 × 2 of equation (2.10) 
change and the whole system becomes: 
 

[
𝜃(0, 𝑠)

𝛷(0, 𝑠)
] = [

1 0
𝐶ℎ𝑒𝑠 1

] [
1 𝑟𝑐
0 1

] [
𝜃(𝑒, 𝑠)

𝐸√𝑠𝜃(𝑒, 𝑠)
]

⏟        
𝑠𝑒𝑚𝑖−𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

 
(2.19) 

 

where E is the material thermal effusivity (kq = 𝐸√𝑠): 
 

𝐸 = √𝑘𝜌𝑐𝑝
𝑚 (2.20) 

 
The temperature solution at z = 0 is given by equation (2.19). 
 

𝜃(0, 𝑠) =
1 + 𝑟𝑐𝐸√𝑠

𝐶ℎ𝑒𝑠 + (𝐶ℎ𝑒𝑟𝑐𝑠 + 1)𝐸√𝑠
𝛷(0, 𝑠) (2.21) 

 
The asymptotic behavior of equation (2.21) for the long times (t → ∞ and s → 0) yields (see 
Appendix 3): 
 

𝜃(0, 𝑠)
𝑠→0

≈
𝛷0
𝐸𝑠3/2

+
𝛷0
𝑠
(𝑟𝑐 −

𝐶ℎ𝑒
𝐸2
) (2.22) 

 

where  is the power dissipated by the half of the heating element divided by its area. 

21/339



 

 

 

 

METTI 8 Advanced School Île d’Oléron, France 

Thermal Measurements and Inverse Techniques Sept. 24th – Sept. 29th, 2023. 

 Tutorial 2: Hot-plate technique – page 8 

 
Once expressed in the time domain, equation (2.22) gives a linear evolution of the temperature 
T(0,t) versus the time square root as presented in equation (2.23). This expression is very 
convenient since it allows to calculate the thermal effusivity thanks to the estimation of the 

slope of T(0,t) = f(√𝑡) between the moment when the inertial effects of the heating element 
heat capacity are null and until the end of the semi-infinite model validity. 
 

𝑇(0, 𝑡) =
2𝜙0

𝐸√𝜋
√𝑡 + 𝑐𝑡𝑒 (2.23) 

 
Both equations (2.17) and (2.23) are useful since they allow to estimate the material heat 

capacity and effusivity, respectively. Therefore, the thermal diffusivity  and the thermal 
conductivity k are available knowing equation (2.20) and that: 
 

𝛼 =
𝑘

𝜌𝑐𝑝
𝑚 (2.24) 

 
2.4. Comparison and analysis with the 3D model 
 
The four temperature expressions (2.15), (2.16), (2.21), and (2.23) are now compared with a 
3D model. For this model, let consider the cross-section S = 4 l L, where l is the width along 

the x-direction and L the length along the y-direction. The boundary conditions are the 
following: 
 

𝜕𝑇(0, 𝑦, 𝑧, 𝑡)

𝜕𝑥
= 0 (2.25) 

−𝑘
𝜕𝑇(𝑙, 𝑦, 𝑧, 𝑡)

𝜕𝑥
= ℎ𝑇(𝑙, 𝑦, 𝑧, 𝑡) (2.26) 

𝜕𝑇(𝑥, 0, 𝑧, 𝑡)

𝜕𝑦
= 0 (2.27) 

−𝑘
𝜕𝑇(𝑥, 𝐿, 𝑧, 𝑡)

𝜕𝑦
= ℎ𝑇(𝑥, 𝐿, 𝑧, 𝑡) (2.28) 

 
The initial data are the following: 

• Material: 

o k = 0.25 W∙m-1∙K-1 

o  = 1 500 kg∙m-3 

o 𝑐𝑝
𝑚 = 1 000 J∙kg-1∙K-1 

o E = 612 J∙m-2∙K-1∙s-1/2. 

o e = 10 mm 

• heating element: 

o Che = 1 000 J∙m-2∙K-1 

• contact resistance: 

o rc = 10-2 m2∙K∙W-1 
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• 3D model considerations: 

o h = 10 W∙m-2∙K-1 

o Fourier series terms number: 100 [6] 

Figures 4 and 5 are the comparison between the temperature evolutions for the 3D () and 
the different 1D models versus time and time square root, respectively. The material thickness 
e is chosen in order to observe the effect of the boundary conditions at z = e during a 
reasonable experiment time (tend = tN = 600 s), and to observe the absence of unwanted 
multidimensional effects comparing the finite 3D and 1D models (Figure 5). The limit of the 
semi-infinite 1D model happens when its temperature still increases while the 1D/3D models 
temperatures begin to increase slowly. The dashed plot is the semi-infinite model where the 
heating element is influenceless. Its temperature is parallel to the semi-infinite 1D model for a 
null heating element influence. Finally, the asymptotic linear finite model (2.17) fits well with 
the 1D/3D models once the semi-infinite model does not fit anymore (Figure 4). 
 

  
Figure 4. Comparison between the 3D and 1D 

models versus time. 
Figure 5. Comparison between the 3D and 1D 

models versus time square root. 

 
Two simple parametric analysis concerning the heating element heat capacity Che and the 
contact resistance rc are presented in Figures 6 and 7, respectively. Figure 6 shows the 
temperature inertia increasing and is caused by the heat capacity Che augmentation. 
Fortunately, the experience shows that the heating element has a low heat capacity value of 
about several hundred (in J∙m-2∙K-1) (see section 4). Figure 7 plots the possible influence of 
various contact resistances. These resistances are compared with the material one (x), in 
order to see whether it is possible to neglect them or not. This resistance is even more weak 
with materials of weaker roughness, such as polycarbonate than cellular concrete for example. 
However, experimentally, the thermocouple presence between two rigid materials 
(polycarbonate, cellular concrete) can create an important contact resistance, compared with 
non-rigid materials (cork, rubber), which can deform themselves and diminish it. 
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Figure 6. Influence of the heat capacity of the heating element on the temperature evolution for the 

finite 1D model (2.15) versus the time square root. 

 

 
Figure 7. Influence of the contact resistance between the heating element and the material on the 

temperature evolution for the finite 1D model (2.15) versus the time square root. 
 
Now let consider the equations (2.21) and (2.23) expressing, respectively, the temperatures 
for the semi-infinite 1D models with (dashed line in Figures 4 and 5) and without (solid line) the 
heating element. The former depends on three parameters: the heating element heat capacity, 
the contact resistance, and the effusivity, and the latter on the effusivity only. Since the heat 
capacity does not belong to the material, it is not a parameter of interest but it must be 
absolutely known and estimated by calibration, since it appears in equation (2.17) for the 
estimation of the material heat capacity. It is possible to determine it progressively with the 
help of a benchmark material of well-known properties by estimating the slope of equation 
(2.23), then with equation (2.21) the heat capacity and the contact resistance. Nevertheless a 
problem lays on the possible correlation between the latter. This point is discussed in section 
3. 
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To sum up, it is theoretically possible to estimate all the physical parameters of the material 
with the hot-plate technique combining three 1D models, in semi-infinite and finite conditions. 
The use of a benchmark material is of prior importance for the estimation of the heating 
element heat capacity. 
 
Before the proper parameter estimation with experimental data (section 4), the next section 
presents the sensitivity studies of the recorded temperature, namely the observable to the 
parameters to estimate. 
 
 
3. Sensitivity study and correlation between parameters 
 
The actors of the sensitivity study are the parameters and the observable. In the case of the 
hot-plate technique, the observable is the temperature recorded at the location z = 0, Texp(0,t), 
versus time, the variable. The location of the observable is of great importance since it must 
correspond to a place where the variation of a parameter implies a maximum influence on the 
observable itself. If the estimation of multiple parameters is at stake, there is a possibility that 
the variation of one parameter influences the other ones. Thus, they are correlated and their 
estimation could be difficult, even impossible, depending on the correlation level between 
them. If no correlation is obvious, the estimation is possible. 
 

The sensitivity coefficients X  (3.1) and more specifically the reduced sensitivity coefficients 
*

X  (3.3) of parameters  are usually used and are given by the equations (3-1)-(3.3) where 

M is the number of parameters and N the number of measurements: 
 

𝐗𝛽(𝑡) =
𝜕𝐓(0, 𝑡)

𝜕𝛃
 (3.1) 

𝑿𝛽(𝑡) =

[
 
 
 
 
𝜕𝑇(0, 𝑡0)

𝜕𝛽1
…

𝜕𝑇(0, 𝑡0)

𝜕𝛽𝑀
⋮ ⋮ ⋮

𝜕𝑇(0, 𝑡𝑁)

𝜕𝛽1
…

𝜕𝑇(0, 𝑡𝑁)

𝜕𝛽𝑀 ]
 
 
 
 

 (3.2) 

𝑿𝛽
∗ (𝑡) = 𝛃

∂𝑻(0, 𝑡)

𝜕𝛃
 (3.3) 

 

𝐗𝛃
∗  is expressed in the same units as the observable (here in kelvin). This is very suitable to 

compare a 𝐗𝛃
∗  given with the measurement noise level, for instance. In our case, the total 

parameters to estimate are  = [rc, Che, , k, E, 𝜌𝑐𝑝
𝑚]T. Knowing the fact that two parameters 

estimated are enough to have them all, let consider directly the series of parameters  

  = [E, 𝜌𝑐𝑝
𝑚, Che, rc]T. 

 
The same initial parameters presented in section 2.4 are considered and simulations are made 

with the help of the 1D model (2.15). Figure 8 plots the reduced sensitivities for the series . 
These plots show that the temperature is first sensitive to the heat capacity of heater, which 
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reaches a maximum at 20 s then becomes stable after 100 s. Then the temperature seems 
sensitive to the contact resistance, which also increase until 100 s and then stands still. The 
temperature is also sensitive to the material properties, first the effusivity then the heat 
capacity: 𝑋𝐸

∗  decreases then becomes constant once the semi-infinite assumption is not 
validate anymore, then 𝑋𝜌𝑐𝑝𝑚

∗  decreases once the asymptotic finite 1D model is validate when 

the temperature increases linearly with the time (sensitivity to the material thermal 
conductivity). 
 

  
Figure 8. Reduced sensitivities for the first 

parameters series   for a 0.01 m2∙K∙W-1 
contact resistance. 

Figure 9. 𝑋𝑟𝑐
∗ versus 𝑋𝐶ℎ𝑒

∗  for a 0.01 m2∙K∙W-1  contact 

resistance. 

 
Globaly, after 100 s, the material effusivity and the heat capacity could be estimated since the 
temperature is not sensitive to Che and rc anymore. The estimation of Che and rc could be 
possible regarding both curves 𝑋𝑟𝑐

∗  and 𝑋𝐶ℎ𝑒
∗ , which do not present the same curvatures in Figure 

9. Indeed the evolution of 𝑋𝑟𝑐
∗  versus 𝑋𝐶ℎ𝑒

∗ , shows no linear evolution between them. 

 
Figures 10 and 11 have been plotted for a contact resistance rc = 0.001 m2∙K-1∙W-1, ten times 
weaker than before. They show that the sentivity to this parameter is less important meaning 
that it could be difficult to estimate it and thus must be neglected. Even if a linearity is obvious 
in Figure 11 meaning a correlation between Che and rc, the estimation of the latter would be 
difficult since the amplitude of its sensitivity is weak. 
 
It is important to notice that the amplitudes of the reduced sensitivities in Figures 8 to 11 are 

function of the level of the excitation. For example, a multiplication by 10 of the heat flux 𝜙0 

will multiply also by 10 the amplitude of the reduced sensivitities. It increases the signal to 
noise ratio and would be helpful for the estimation, but a stronger heat excitation increases the 
temperature rise and can make the properties thermally dependant. 
 
Let express the sensitivity matrix (3.2) in a more simplified way by (3.4), which is a N × M 
matrix where N is still the number of measurements and M is the number of parameters. Thus 
i is the time increment and j the parameter increment. 
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𝑋𝛽(𝑡) = [
𝑋11 ⋯ 𝑋1𝑀
⋮ ⋱ ⋮
𝑋𝑁1 … 𝑋𝑁𝑀

] with 𝑋𝑖𝑗 =
𝜕𝑇(𝑡𝑖;𝛽)

𝜕𝛽𝑗
|
𝛽𝑘,for𝑘≠𝑗

 (3.4) 

 

  
Figure 10. Reduced sensitivities for the first 

parameters series   for a 0.001 m2∙K∙W-1  
contact resistance. 

Figure 11. 𝑋𝑟𝑐
∗ versus 𝑋𝐶ℎ𝑒

∗  for a 0.001 m2∙K∙W-1  

constact resistance. 

 
So in equation (3.4), the (square) variance-covariance M x M matrix and the standard deviation 
𝜎𝛽̂𝑗of the estimated parameters by the ordinary least squares method are defined by: 

 

𝑪 ≡ cov(𝛃̂) with 𝐶𝑖𝑗 = cov(𝛽̂𝑖, 𝛽̂𝑗) and 𝜎𝛽̂𝑗 = √𝐶𝑗𝑗  (3.5) 

 
They characterize the stochastic behaviour of the presence of an independent identically 
distributed noise, of standard deviation 𝜎 in the signal. They are given by: 
 

cov(𝛃̂) ≡ 𝜎2𝐀 with 𝐀 = (𝐗𝑇𝑿)−1 and 𝜎𝛽̂𝑗 = 𝜎√𝐴𝑗𝑗 (3.6) 

 
Large relative standard deviations  𝜎𝛽̂𝑗/𝛽𝑗 may stem from a proportionality between 2 columns 

of the sensitivity matrix. So, it is interesting to check the level of their correlation coefficient: 
 

𝜌𝑖𝑗 =
cov(𝛽̂𝑖, 𝛽̂𝑗)

𝜎𝛽̂𝑖𝜎𝛽̂𝑗
=

𝐴𝑖𝑗

√𝐴𝑖𝑖√𝐴𝑗𝑗
 (3.7) 

 
The correlation coefficient (3.7) varies between -1 and 1. Parameters tend not to be correlated 

when 𝜌𝑖𝑗 tends to 0, and on the contrary become more and more correlated when  tends to  

± 1. This coefficient should not be confused with the Pearson correlation coefficient whose 
level characterizes the degree of linearity of the output of a model to possible explanatory 
variables Xj that have random properties, while here the sensitivity coefficients are 
deterministic. The interested reader can find more information about this subject in Lecture L5 
on Non linear parameter estimation in this series. 
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These coefficients depend on the estimation time test = N × t (t being the experimental 

sampling time time for example here 250 ms). All the correlation coefficients 2 are plotted in 
Figure 12 for an estimation time varying from 100 s to 1 000 s. It must be helpful to have a first 
idea of a pertinent estimation time. For example, the estimation of both Che and rc seems difficult 

along the whole experiment, since Figure 12 shows that 𝜌𝐶ℎ𝑒𝑟𝑐
2  has a value stated between 0.8 

and 0.9 and even 𝜌𝐸𝐶ℎ𝑒
2 decreases with time, but 𝜌𝐸𝑟𝑐

2  is very high, which demonstrates a strong 

correlation between the contact resistance and the effusivity.This remark shows the 
importance of a calibration. 
 

 
Figure 12. Evolution of the different correlation coefficients 2 versus the estimation time. 

 
 
4. Parameter estimations, measurements and results 
 
First tests with synthetic data are performed to test the estimation procedure. They are created 
from the finite 1D model (2.15) presented in section 2.2, then noised. The noise level is 
adjusted regarding the experimental one. The parameter estimation is performed through the 
determinist fashion using the Levenberg-Marquadt (LM) algorithm. The procedure is repeated 
in the second part with real experimental data. 
 
4.1. Tests with synthetic data 
 
The principle is to create synthetic data from the complete model with the expected parameters 
to estimate and an additive noise representative of the experimental one. This noise is 
assumed null-averaged and normally distributed. Then the procedure is launched with initial 
parameters different from the expected ones. 
 
Figures 13 and 14 represent synthetic data obtained with a 0.07 °C noise added to the 
theoretical model. They are plotted both versus time and the time square root. 
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Figure 13. Simulation of synthetic data from the 

finite 1D model versus time (2.15). 
Figure 14. Simulation of synthetic data from the 

finite 1D model versus the time square root 
(2.15). 

 
The first step consists in using the semi-infinite model (2.23) in order to estimate the sample 
thermal effusivity E, giving a linear evolution of the temperature T(0,t) versus the time square 
root with an initial temperature T(0,0) = 0. Regarding the synthetic data (theoretical data 
corrupted by a simulated additive random noise) in Figures 13 and 14, the temperature linear 
evolution does not begin at t = 0, but later, that is why a constant is added in equation (2.23). 
Consequently, the estimation of the effusivity must be time-bounded. The estimation time 
interval has been chosen arbitrarily between 100 and 200 s approximately when the semi-
infinite assumption is validated (10 and 14.14 s1/2 in Figures 13 and 14). The initial values are 
E0 = 200 J∙m-2∙K-1∙s-1/2 (and cte = 1) knowing that the expected value is 612 J∙m-2∙K-1∙s-1/2. Using 
the LM algorithm, the estimated effusivity is E = 564 J∙m-2∙K-1∙s-1/2, representing a 7.9 % error 
with the expected value, the number of iteration is 1. Figures 15 and 16 show also the 
residuals, they highlight the good fitting of the semi-infinite model on the synthetic data during 
the estimation time interval, what happens before and after this domain is without 
consideration. Let us note also that the inferior time boundary is sooner when the heat capacity 
of the material increases and the contact resistance decreases. An asymmetrical device with 
a flexible insulator on one side allows to diminish the contact resistance [1]. 
 
The purpose now is to use the complete semi-infinite model (2.21) to estimate this time the 
heating element heat capacity, the contact resistance, and the effusivity again in a larger 
estimation time interval (Figures 17 and 18). This time interval has been chosen between 0 
and 200 s. The initial values of the parameters are: Che0 = 100 J∙m-2∙K-1, rc0 = 10-4 m2∙K∙W-1,  
E0 = 564 J∙m-2∙K-1∙s-1/2. Finally, with the help of the LM algorithm, the estimation gives, for a 
number of iteration still equals to 1 the following results: Che = 989 J∙m-2∙K-1,  
rc = 0.009 8 m2∙K∙W-1, E = 606 J∙m-2∙K-1∙s-1/2, thus the errors are 1.1 %, 2.0 %, and 1.0 %, 
respectively, with the expected values. Note that rc0 is in fact the sum of the contact resistance 
and of the resistance of the Kapton sheet covering the resistive wire of the heating element 
(about 0.000 5 m2∙K∙W-1). 
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Figure 15. Synthetic and theoretical 

temperature curves versus time square root for 
the estimation of the effusivity E. 

Figure 16. Synthetic and theoretical 
temperature curves versus time for the 

estimation of the effusivity E. 
 
In Figure 19, the use of the asymptotic model (2.17) for the estimation of the sample heat 

capacity (𝜌𝑐𝑝
𝑚) finishes the procedure. The initial value of the heat capacity is  

𝜌𝑐𝑝,0
𝑚  = 10 J∙m-3∙K-1. The estimated value is 𝜌𝑐𝑝

𝑚= 1.46 × 106 J∙m-3∙K-1, that is to say with a  

2.7 % error from the initial value (1.5 × 106 J∙m-3∙K-1). Figures 20 and 21 plot both the synthetic 
data with the finite 1D model with all the estimated parameters. 
 

  
Figure 17. Synthetic and theoretical 

temperature curves versus time for the 
estimation of the effusivity E, the heating 

element heat capacity Che, and of the contact 
resistance rc in a larger estimation time interval 

representing the semi-infinite medium 
assumption. 

Figure 18. Synthetic and theoretical 
temperature curves versus time square root for 

the estimation of the effusivity E, the heating 
element heat capacity Che, and of the contact 

resistance rc in a larger estimation time interval 
representing the semi-infinite medium 

assumption. 
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Figure 19. Synthetic and theoretical temperature curves versus time for the estimation of the 

sample heat capacity 𝜌𝑐𝑝
𝑚using the asymptotic 1D finite model (2.17). 

 

  
Figure 20. Synthetic and theoretical 

temperature curves with all the estimated 
parameters versus time. 

Figure 21. Synthetic and theoretical 
temperature curves with all the estimated 

parameters versus time square root. 
 
 
4.2. Tests with experimental data 
 
Contrary to the previous section 4.1, estimation from experimental data requiers a reference 
material dedicated to the calibration. The latter allows to determine both a corrected cross 
section S and the heating capacity of heating element. Indeed the flux depends on a surface 
which may be different from the measured one initially (see section 1). The second parameter 
is supposed to be constant whatever the tested material. 
 
4.2.1. Heating element calibration 
 
 Two thermal properties of the materials presented in Table 1 have been beforehand 
measured: the thermal conductivity k through the guarded hot plate (between 18 °C and  
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28 °C) and the thermal capacity 𝑐𝑝
𝑚 with by calorimetry (between 20 °C and 30 °C). Table 2 

gathers all results. The calibration has been performed with the polycarbonate samples. 
 

Table 2. Thermal properties of the tested materials obtained from guarded hot plate technique. 

material thermal conductivity 
(W∙m-1∙K-1) 

thermal capacity 
(J∙kg-1∙K-1) 

Effusivity 
(J∙m-2∙K-1∙s-1/2) 

polycarbonate 0.196 1 233 534 

cellular concrete 0.164 915 304 

rubber 0.380 1 258 824 

cork 0.047 1 604 139 

 
Figure 22 presents the evolution of the temperature (red dots) versus time square root with the 
polycarbonate sample. During experiment, the flux is calculated knowing that: 
 

𝜙0 =
𝑅𝐼2

2𝑆
 (4.1) 

 
In equation (4.1), S is the cross section, whose value could differ from the simple product of 
the length per the width of the heating element. It is possible to correct it with the estimation of 

0 using equation (2.23) representing the temperature asymptotic behavior, the slope being 
proportionnal to S-1. Figure 22 shows the results between the initial and the corrected cross 
section, since the flux RI2/2 (see Figure 3) and the polycarbonate effusivity are known. 
 

 
Figure 22. Estimation of the corrected cross section during the calibration with polycarbonate. 

 
The second part of the calibration concerns the heating element heat capacity estimation. This 
time, the complete semi-infinite model (2.21) is used between 0 and 600 s. Figure 25 and 26 
are two cases where the estimation is correct or not, that is to say during and after the 
asymptotic semi-infinite time interval validity, respectively, approximately fixed at 140 s. During 
the valid time interval, the mean and the standard deviation of the heat capacity of the heating 
element is (343 ± 26) J∙m-2∙K-1, this average value corresponds approximately to the moment 
when the residuals are the weakest. This value is retained for the next experiments. 
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Figure 23. Heating element heat capacity 

estimation at 60 s. 
Figure 24. Heating element heat capacity 

estimation at 350 s. 

 
4.2.2. Estimation with other materials 
 
Such estimations are presented in Tables 1 and 2, where the four same materials have been 
tested. Table 3 gathers the estimation results concerning the effusivity and the heat capacity. 
The thermal conductivity and diffusivity are then calculated and compared with the values 
obtained through the guarded hot plate technique (Table 2). 
 

 
Figures 25 to 29 present results for the tests with the polycarbonate. Figure 25 shows the first 
estimation of the effusivity using equation (2.23). This estimation works rather well for every 
material. The selection of the estimation interval depends on the thickness of the sample and 
of the acquisition frequency, but even with the cork sample of 4 mm, estimation results are 
satisfying. The difficulty increases with the estimation of both Che and rc even if the former is 
already known. It happens that it does not work every time during tests with rubber and 
polycarbonate samples. 
 
Figure 26 shows the evolution versus time of the correlation coefficients (3.7). It shows a 
persistent important correlation between the heating element and the contact resistance but 
satisfying decreasing correlations versus time between the effusivity and both the heating 
element and the contact resistance. This observation makes difficult the estimation and shows 
the importance of the previous calibration. 
 

Table 3. Thermal properties estimation and calculation results. 

material polycarbonate cellular concrete rubber cork 

E (J∙m-2∙K-1∙s-1/2) 544 316 839 177 

rc, (10-3 m2∙K∙W-1) 2.64 4.13 0.10 10 

𝜌𝑐𝑝
𝑚 (105 J∙m-3∙K-1) 15.35 6.62 21.58 7.52 

k (W∙m-1∙K-1) 0.191 0.158 0.326 0.042 

 (mm2∙s-1) 0.124 0.250 0.151 0.056 
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Figure 25. First estimation of the effusivity. Figure 26. Correlation coefficients of the 
parameters versus time. 

 

  
Figure 27. Estimation of the material heat 

capacity. 
 

Figure 28. Evolution of the finite 1D model with 
the estimated parameters and comparison with 

the experimental data. 

 
Since Che is known, it is now possible to estimate the material heat capacity using equation 
(2.17). Figure 27 shows an example of its estimation for long times. Finally, once all parameters 
are estimated, they are used in equation (2.15) for a global comparison with the experimental 
data (Figure 28). 
 
 
Conclusion 
 
This tutorial deals with the estimation of thermal properties of low conductivity materials 
through the hot-plate technique. Once the experimental apparatus and the materials presented 
during the first part, the theoretical models and the estimation procedure are developped : 
three finite, semi-infinite, asymptotic models are used to calibrate the heating element and then 
to estimate the thermal effusivity and the heat capacitiy of the tested material. The chosen 
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calibration material is the polycarbonate, and the other materials are cellular concrete, rubber, 
and cork. 
 
 A part dedicated to the sensitivity study was presented in order to discuss possible correlations 
between parameters and thus the possibility to estimate one or more with only one experiment. 
Anyhow, the calibration of the heating element heat capacity is performed. Tests with different 
materials have mainly pointed out the importance of the choice of the estimation interval, either 
for the effusivity or for the heat capacity estimation. Indeed, it is not always easy to determine 
the beginning or the end of an asymptotic model. However, the residuals signature and the 
correlation coefficients between the estimated parameter yield supplementary information. 
 
It is important to know that the proposed methodology has limitations. Indeed, for instance, the 
experimental flux must stay constant and has to be controled during the whole experiment. If 
it is not constant, its variation should be taken into account. One other point concerns porous 
materials, such as the cellular concrete or the cork. If their relative humidity is too large, purely 
conductive heat transfer are not unique anymore and the initial theoretical model is 
inapropriate. Degiovanni and Jannot discuss this point in [1]. 
 
The estimation procedure presented in this tutorial is only perfomed by ordinary least-squares 
coupled with a Levenberg-Marquadt optimization algorithm. This minimization procedure is 
deterministic, which means that the uncertainty of the estimated parameter is not calculated 
but it must be evaluated from other observations, such as the residuals, the covariance matrix. 
Other heuristic methods exist, such as the Bayesian inference which gives estimation results 
with an average and a standard deviation. But in any way, the systematic error must evaluated 
too. 
 
 
Appendix 1: The Numerical inversion methods of the Laplace transform 
 
The theoretical models (2.15) and (2.21) are transient and expressed in the Laplace domain 
where the Laplace variable s substitutes the time variable t. To get back to the time domain t, 
several possibilities exist, such as tables [9] or with the help of numerical algorithms. Three of 
those are presented in this section, the algorithms of De Hoog [11], Fourier [6], and Stehfest 
[12,13], and their efficiency depend on the type of the heat excitation. Experimentally, an 
electrical supply delivers at a given time t = t0 a constant current I in the heating element 

dissipated by Joule effect. This power (t) can be expressed according to three different ways: 
 

• A Heaviside function: 

t < t0 𝜙(𝑡) = 0 (A1.1) 

t ≥ t0 𝜙(𝑡) = 𝜙𝑖 (A1.2) 

 

• An exponential function: 

t < t0 𝜙(𝑡) = 0 (A1.3) 

t ≥ t0 𝜙(𝑡) = 𝜙𝑖 (1 − 𝑒
− 
𝑡−𝑡0
𝜏 ) (A1.4) 
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• A sigmoidal function: 

∀𝑡 𝜙(𝑡) = 𝜙𝑖
1

1 + 𝑒−𝜆(𝑡−𝑡0)
 (A1.5) 

 
Experimentally, the power delivery is not strictly abrupt and discontinuous at time t0 but 

presents a continuity, and the presence of transitional points between 0 and i testifies this 
consideration. Consequently, the Heaviside function can be sufficient but is a simplified view. 
The exponential function remains discontinuous at time t0. The sigmoidal function presents the 
advantage to be continuous versus time compared with the Heaviside and the exponential 

ones. In the relations (A1.4) and (A1.5), the coefficients  and  must be estimated by ordinary 
least squares method with experimental data. According to equation (2.5), the thermal 
stimulation expressions transformed in the Laplace domain are given by (A1.6), (A1.7), and 

(A1.8) [14] where (s) are the digamma functions [9]. 
 

𝛷(0, 𝑠) = 𝜙𝑖
𝑒−𝑠𝑡0

𝑠
 (A1.6) 

𝛷(0, 𝑠) = 𝜙𝑖 [
𝑒−𝑠𝑡0

𝑠
−
𝑒
−(
1
𝜏
+𝑠)𝑡0

1
𝜏
+ 𝑠

] (A1.7) 

𝛷(0, 𝑠) =
𝛹 (
𝜆 + 𝑠
2𝜆

) − 𝛹 (
𝑠
2𝜆
)

2𝜆
 

(A1.8) 

 
The inversion equation for the Fourier algorithm is proposed with relations (A1.9) and (A1.10). 
The readers should consult [6] for more information. 
 

𝑓(𝑡) =
𝑒𝑥𝑝(𝑐𝑡)

𝑡𝑚𝑎𝑥
{𝐹(𝑐)/2

+∑(𝑅𝑒[𝐹(𝑐 + 𝑗𝜔𝑛)] 𝑐𝑜𝑠(𝜔𝑛𝑡) + 𝐼𝑚[𝐹(𝑐 + 𝑗𝜔𝑛)] 𝑠𝑖𝑛(𝜔𝑛𝑡))

∞

𝑛=1

} 

(A1.9) 

𝜔𝑛 =
𝑛𝜋

𝑡𝑚𝑎𝑥
 (A1.10) 

 
An infinite series discretizes the equation (A1.9). Naturally, an infinite number of terms is not 
possible and a choice of a finite number must be done with care. This choice is conditioned 
also by the terms c and tmax. The accuracy of the inversion depends on this triplet. Anyhow, 
one must verify that the condition (A1.11) is respected. 
 

𝑒𝑥𝑝(−2𝑐𝑡𝑚𝑎𝑥) 𝑓(2𝑡𝑚𝑎𝑥) ≅ 0 (A1.11) 
 
De Hoog algorithm [11], which is not presented here but given during the tutorial, is based on 
accelerating the convergence of the Fourier series obtained from the inversion integral using 
the trapezoidal rule. In a worry of both inversion quality and of time consumption where a 
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compromise can have its importance, the user has the possibility to modify the terms number 
of the series. 
 
The inversion with Stehfest algorithm is given by the relation: 
 

𝑓(𝑡) ≅
𝑙𝑛(2)

𝑡
∑𝑉𝑛𝐹 [

𝑛 𝑙𝑛(2)

𝑡
]

𝑁

𝑛=1

 (A1.12) 

 
where: 
 
V1 = 1/12 
V2 = -385/12 
V3 = 1 279 
V4 = -46 871/3 
V5 = 505 465/6 
V6 = -473 915/2 
V7 = 1 127 735/3 
V8 = -1 020 215/3 
V9 = 328 125/2 
V10 = -65 625/2 
 
Figures A1 to A3 could present examples of inversion results for the three stimulation types 
and for the three algorithms if t0 is not 0 like it is commonly done during hot-plate measurement. 

The initial time is t0 = 10 s, the response time in relation (A1.4) is  = 0.1 s and the coefficient 

 = 10 in relation (A1.5). Figure A1 concerns the crenel function, which shows that the best 
results are for De Hoog algorithm. Fourier presents small oscillations around t0 but fits correctly 
for a value of c = 0.05. Finally, Stehfest fits rather well away from t0 but presents instability 
around; nevertheless, if t0 = 0, Stehfest works well at t = 0. Figures 4 and 5 present similar 
results as for Figure A3. 
 
The average residuals <res> have been calculated between the results obtained with the 
relation (A1.13) where the first term is the function in the t time domain and the second term is 
the inversion from the Laplace domain. In every case, the average residuals are all estimated 
less than ± 10-3. 
 

< 𝑟𝑒𝑠 >=
1

𝑁
∑{𝜙(𝑡𝑖) − 𝐿

−1[𝛷(𝑠𝑖)]}

𝑁

𝑖=1

 (A1.13) 
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Figure A1. Example of comparison between the different inversion programs from the Laplace to 

the time domain for a heat excitation initial time t0 = 10 s in the case of a Heaviside increase. 
 

 
Figure A2. Example of comparison between the different inversion programs from the Laplace to 
the time domain for a heat excitation initial time t0 = 10 s in the case of an exponential increase. 
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Figure A3. Comparison between the Stehfest inversion program from the Laplace to the time 

domains for a heat excitation initial time t0 = 10 s in the case of a sigmoidal signal. 
 
Figures A1-A3 show that it is necessary to verify the good accuracy of the inversion algorithm, 
since some are more relevant than others. Obviously, in the case of the hot-plate experiments, 
the Heaviside function is enough to simulate the heat stress and so is the De Hoog algorithm 
for the inversion, and both are now used for the rest of this tutorial. Indeed, for instance, the 
residuals study presents results where the average is around zero. Of course, in the case of 
other characterization techniques, this choice must be again examined. 
 
 
Appendix 2: finite 1D model asymptotic behavior 
 
Consider again equation (2.15) in section 2.2: 
 

𝜃(0, 𝑠) =
1 + 𝑡𝑎𝑛ℎ(𝑞𝑒) 𝑘𝑞

𝐶ℎ𝑒𝑠 + 𝑡𝑎𝑛ℎ(𝑞𝑒) (𝑟𝑐𝐶ℎ𝑒𝑠 + 1)𝑘𝑞
𝛷(0, 𝑠) (A2.1) 

 
When t → ∞, s → 0, it comes that: 
 

𝜃(0, 𝑠) =
1 + 𝑘𝑞2𝑒

𝐶ℎ𝑒𝑠 + 𝑘𝑞
2𝑒𝐶ℎ𝑒𝑟𝑐𝑠 + 𝑘𝑞

2𝑒
𝛷(0, 𝑠) (A2.2) 

 

As 𝑘𝑞2 = 𝜌𝑐𝑝
𝑚𝑠, it comes that: 

 

𝜃(0, 𝑠) =
1 + 𝜌𝑐𝑝

𝑚𝑒𝑠

𝜌𝑐𝑝
𝑚𝑒𝐶ℎ𝑒𝑟𝑐𝑠

2 + (𝐶ℎ𝑒 + 𝜌𝑐𝑝
𝑚𝑒)𝑠

𝛷(0, 𝑠) (A2.3) 

 

As s2 << s, one gets, for a step excitation ( ), /s sF = F 00 : 
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( )
( ) ( )

00

2
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m

p
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he p he p

c e
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C c e s C c e s




 


= +

+ +
 (A2.4) 

 
Once expressed in the time domain, relation (A2.4) becomes: 
 

𝑇(0, 𝑡) =
𝜙0

(𝐶ℎ𝑒 + 𝜌𝑐𝑝
𝑚𝑒)

𝑡 +
𝜌𝑐𝑝

𝑚𝑒𝜙0

(𝐶ℎ𝑒 + 𝜌𝑐𝑝
𝑚𝑒)𝑠

+ 𝑇𝑒𝑥𝑡 (A2.5) 

 
which is the expression of “semi-permanent regime” as proposed by [14], that is to say until 
the 2D/3D effects appear. Indeed, the slope in relation (A2.5) can be easily obtained 
considering the lumped body assumption: 
 

𝜙0 = (𝜌𝑐𝑝
𝑚𝑒 + 𝐶ℎ𝑒)

𝑑𝑇

𝑑𝑡
 (A2.6) 

 
 
Appendix 3: semi-infinite 1D model asymptotic behavior 
 
Consider equation (2.21) in section 2.3: 
 

𝜃(0, 𝑠) =
𝛷0
𝑠

1 + 𝑟𝑐𝐸√𝑠

𝐶ℎ𝑒𝑠 + (1 + 𝑟𝑐𝐶ℎ𝑒𝑠)𝐸√𝑠
 (A3.1) 

 
Let express the limit development of equation (A3.1) for t → ∞ and s → 0 [1] in the case of a 
power step excitation with

0(0, ) /s s =  : 

 

𝜃(0, 𝑠)
𝑠→0

≈
𝛷0
𝐸𝑠3/2

1 + 𝑟𝑐𝐸√𝑠

1 +
𝐶ℎ𝑒
𝐸 √𝑠

 (A3.2) 

𝜃(0, 𝑠)
𝑠→0

≈
𝛷0
𝐸𝑠3/2

(1 + 𝑟𝑐𝐸√𝑠) (1 −
𝐶ℎ𝑒
𝐸
√𝑠) (A3.3) 

𝜃(0, 𝑠)
𝑠→0

≈
𝛷0
𝐸𝑠3/2

[1 + (𝑟𝑐𝐸 −
𝐶ℎ𝑒
𝐸
√𝑠)] (A3.4) 

𝜃(0, 𝑠)
𝑠→0

≈
𝛷0
𝐸𝑠3/2

+
𝛷0
𝑠
(𝑟𝑐 −

𝐶ℎ𝑒
𝐸2
) (A3.5) 

 
Once expressed in the time domain, relation (A3.5) becomes: 
 

𝑇(0, 𝑡) ≈
𝑡→∞

𝛷0

𝐸√𝜋
√𝑡 + 𝛷0 (𝑟𝑐 −

𝐶ℎ𝑒
𝐸2
) (A3.6) 

 
The evolution of the temperature is thus function of the time square root. The heating element 
inertia and the contact resistance do not influence the temperature when the time tends to 
infinity. The slope of relation (A3.6) is inversely proportional to the material effusivity. 
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Tutorial 3: Temperature and heat flux measurements  
 

F Lanzetta1, B Garnier2 
 

1 FEMTO-ST, Energy Department, Univ. of Franche-Comté, CNRS, Belfort, France 
  E-mail: francois.lanzetta@univ-fcomte.fr 

 
2   Laboratoire de Thermique et Energie de Nantes, UMR CNRS 6607, Univ. Nantes, 

France 
 E-mail: bertrand.garnier@univ-nantes.fr 

  
 
Abstract. This tutorial is about temperature and heat flux measurement with thermocouples and can 

be seen as complementary information to lecture L2. Time constants and errors due to heat leakage 

through the connection wire of the thermocouples will be illustrated with experiments. Some rules 

will be explained to implement thermocouples in metallic samples in order to realize accurate and 

sensitive 1D heat flux sensors. Thin film heat flux sensors will also be discussed. 

1. Introduction 

 

   One will expect a temperature sensor to be 1) sensitive to temperature, 2) accurate, and 3) with low inertia. 

The sensitivity is provided by the thermometric phenomena (see lecture L2 for sensitivity values). The 

accuracy comes on the one hand from the calibration and measurement of the thermometric phenomena 

and on the other hand, from the correct implementation of the sensors.  The first is rather well known, the 

latter being often ignored.  The inertia of a thermocouple is usually characterized by its time constant which 

depends also on the medium in which it is mounted. 

   In this tutorial, experiments will be performed in order to illustrate sensor time constants, errors due to 

incorrect implementation of thermocouples. Then the design of accurate 1D heat flux sensors will be 

presented. 

 

2. Time constants of various thermocouples  

 
The behavior of a sensor is characterized by its response to a disturbance in its surroundings. The 

response time of a temperature sensor depends on the physical properties (density, specific heat, thermal 

conductivity), the transport properties of the fluid (turbulence, pressure, velocity, and physical properties), 

and the thermal exchanges (radiation, convection, conduction) between the sensor and the surroundings [1-

3]. A considerable amount of work has been carried out on the transient behavior of thermocouples and 

hot/cold wires (standard size, small and micro sizes) in flowing gases and liquids [4, 5].  

Different dynamic characterization methods have been used to estimate response times: 

- Standard immersion-plunge tests in liquids or gases [6], 

- Current injection with sinusoidal, square-wave, 3w methods [3], 

- Optical and chopped laser beam methods [7-10], 

- Pulsed wire methods [11], 

- Rocket plume method [12], 

- Convection method with fluid flows [10], 
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The thermometric device must show characteristics in order that interaction between sensor and 

medium reaches the equilibrium temperature in a sufficiently small time so that the temperature variations 

of the medium, during this same time, are negligible. 

    

The thermal inertia is usually quantified by a characteristic time tx which can be the time constant   

or time response tr. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Typical temperature sensor response 

 

Most of these works neglected the effects of conduction along the wires and radiation between the sensor 

external surface and the surroundings. Investigations have been devoted to the determination of the classical 

wire time constant  considering convection heat transfer only: 
2

4

w w

g

c d

Nu





=              (1) 

 

Where d is the diameter of the sensor, w and cw are the density and the specific heat of the sensor 

material,  is the thermal conductivity of the fluid and Nu the Nusselt number. 
 

If  T(0) is the initial temperature and T() the equilibrium temperature, the time response tx is defined 

such that : 

         

( ) ( )

( ) ( )0

xT T t
x

T T

 −
=

 −
 (2)

 

   

 

• The time constant , is defined with x = 1/e 0,368 (e = 2,718...) 

 

• The k.10-n time response, tr,  is defined with x = k.10-n.  

 

The quantities  or tr depend not only on the sensor but also on how it is mounted in or on the medium 

and how it is connected to the measurement device. So talking about the time response of a sensor does 

not make sense if we don’t consider the medium in or on it is mounted. 

 

 

 

T 

T(0) 

T(tx) 
T() 

tx t 
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Figure 2: Temperature recording in quiet air 
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Figure 3: Temperature recording in stirred water 
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Figure 4 : Temperature recording in mercury ( 12°C) 

 
 

 

In this tutorial, we investigate the time constants of thermocouples since this type of sensor is very 

common due to their easy implementation, fast response, and low cost. Four type K thermocouples are 

considered with two diameters (80 and 200 m) and with or without stainless steel sheath. They were 

plunged successively into three different mediums. Stirred water was provided by a built-in circulating 

pump of a temperature-controlled water bath (at 12°C). A 5cm3 mercury beaker was maintained also at 

12°C. The quiet air was the room air (at about 20°C). Figures 2 to 4 show the measured transient 

temperatures for the 4 thermocouples plunged in the three different mediums. The transient measurements 

are performed using a low-voltage recorder (Yokogawa, 16 channels, 100 kHz). 
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Table 1: Time constants (ms) of common type K thermocouples with various diameters, with and without 

sheath, and mounted in various mediums. 

Thermocouple→ 

Medium 
No sheathed Sheathed* 

 Φ = 0,08 mm Φ = 0,2mm Φ = 0,5 mm Φ = 2,0 mm 

quiet air  595  2330 30980 42720  

mercury** 45.2  38.3  129.3 1208.5  

stirred water 16.4  14.0 28.5 698.1  

* : stainless steel sheathed  thermocouple with junction welded at the extremity of the sheath   

**: mercury k=8.3 W.m-1.K-1 ; cp= 140 J.kg-1.K-1, =13600kg.m-3  ( a= 4,36 10-6m2.s-1); water (a= 1,68 10-

7m2.s-1) 

 

 

The measurements clearly show the influence of the medium on the time constant of thermocouples.  The 

time constants range from a few ms to several seconds.  In addition, one can observe several features: 

• As obtained with lumped capacitance model (=cpL/h), the time constant decreases for 

increasing heat transfer coefficient. This can be observed when switching from quiet air to 

mercury and then to stirred water.  

• The higher the diameter of the sensors, the higher the time constants are 

Table 2 shows some additional values of the time constant measured with various temperature sensors 

[13]. 

 
Table 2: Time constants from literature for various temperature sensors [13] 

Sensor Medium Time constant (s) 

mercury-in-glass thermometer =9mm  quiet air 450 

mercury-in-glass thermometer =9mm  quiet water 4,8 

metallic thermoresistances in a ceramic sheath =2mm  stirred water 0,5 

sheathed thermocouples ( =0.5mm)  - thermocouple junction 

inside the insulation- 

hot water 0,035 

sheathed thermocouples ( =0.5mm) – thermocouple junction 

welded on the sheath  

hot water 0,015 

Metallic thin film (a few m thick) deposited on a substrate 

(thermocouple or thermoresistance) 

- a few tens of  s 

 
 

3. Discussion about the time constant 
 

 Dahl and Fiock [14] and Alford and Heising [15] have discussed the problem of lead conduction from 

a spherical bead along the wires for a thermocouple cooled in a static gas from a temperature T1 to a 

temperature T2. The time constant  includes the effect of convection and conduction: 

 
1

3 cv
cd

w w

h
K

c d




−

 
= + 

 
           (3) 
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 Melvin [9] adopted a similar point of view in the precedent work and developed a simple approximate 

solution of the heat conduction equations integrating the heat transfer coefficient as the ratio between the 

thermal conductivity of the gas and the radius of the thermocouple junction. For gases of relatively low 

thermal conductivity the time constant of the thermocouple was expressed as: 

 
1

2

3 g

w wc d






−

 
=  

 
           (4) 

 

 Benedict [16] established an expression of the time constant accounting convection, conduction and 

radiation: 

( )1

4
1

w

C
w

gT


 

 

−
=

+

           (5) 

Where w is a conduction correction factor [5, 17],  a radiation error factor [5], w the thermocouple 

emissivity and Tg the gas temperature. 

 

If the thermal environment includes effects of convection, conduction and radiation, the response of the 

sensor is not a first-order. Pandey [2] and Dantzig [18] suggested that a simple time constant can be 

expressed as: 
1

1 1 cvC C h −= +             (6) 

 

where C1 and C2 are correlation constants dependent on the properties of the thermocouple and hcv is the 

average heat transfer coefficient between the thermocouple external surface and the air flow.  

 

 

Actually, the fact that different kinds of heat transfers are involved should lead to a global time-constant in 

which the different phenomena contributions are included [19, 20]. As a consequence, the ability of a 

thermocouple to follow any modification of its thermal equilibrium is resulting from a multi-ordered time 

response which more accessible experimental parameter remains the global time constant.  

 

The multi-ordered temperature response of a thermocouple can be represented by the general relation [1]: 

1 2

1 2

g

n

g i n

T T t t t
K exp K exp K exp

T T   

−     
= − − − − − −    

−      
     

(7) 

 

Where Ti is the initial temperature, Tg is the fluid temperature. The value of the constants K1, K2, …, Kn as 

well as the time constants 1, 2, …, n, depending on the heat flow pattern within the thermocouple and the 

surrounding fluid. Kerlin et al. [21] showed that the time constants 1 and2 are the most important. 

Cimermam [6] used the same result for real Pt-resistance temperature-sensor in dynamic measurement 

relative to natural and petroleum gas processes. 

 

4. Errors due to heat losses through the connection wires of the thermocouples 

 
To avoid temperature bias due heat loss along the thermocouples wires, one usually considers that a 

thermocouple has to be mounted along an isothermal line started from the junction and on a length equal to 

100 times the metallic wire diameter  of the thermocouple. If it is not the case, one may obtained heat loss 

which will change locally the temperature of thermocouple junction. In lecture L5 section 2.3, a thermal 
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model was designed to study the effect of various parameters on this systematic error. In this section, an 

experiment will be used to quantify this temperature measurement error. 

A PMMA sample of 76.8 mm diameter and 20mm thickness is instrumented with 7 type K thermocouples 

of diameter 0,2 mm as shown on fig. 5. Three thermocouples #1, #2 and# 3 are correctly mounted: starting 

from the junction, the thermocouples are along isothermal lines at least on a length of 20 mm. On the 

contrary, thermocouple #7 is perpendicular to the isothermal lines and thermocouples #4, #5 and #6 are 

close to the edge. Two temperature controlled thermal baths are used to prescribe a constant temperature 

difference (40°C) between each two sample faces  

 

 

 

 

 

 

 

 

 

 
Figure 5: experimental setup with an instrumented PMMA sample  

 

 

 

Table 3 : steady state temperature measurements from experimental setup  of fig.5   

 

*, mm # T , °C #  T , °C # T , °C 

5 1 49,9 4 43,5   

10 2 40,5 5 35,4 7 34,8 

15 3 31,5 6 27,7   

*: distance between thermocouple and the heated face 

 
From the measurement obtained with steady state, one can observe that: 

 

• The temperature discrepancy between thermocouple perpendicular (#7) and parallel (#2) to the 

isothermal lines is very important (5,7°C !), this result from the heat losses through the metallic wire 

of thermocouple #7 inducing a local temperature decrease at its hot junction. This happens for a 0.2 

mm thermocouple, one would have got much more error for metallic sheathed thermocouple where 

the metallic cross-section of the complete thermocouple is typically 6 times higher than the one of 

the bare thermocouples (thickness of metallic wall: 10 % and metallic wire diameter 18 % [22]) 

 

• Thermocouples #4, #5 and #6 are closed to the edge (4 mm only) , the connection wires being in the 

thermal boundary layer therefore they show lower temperature measurement,  from 3.3 to 6.4°C less 

compared to the correct ones ( #1, #2 and #3). As illustrated on fig. 6 , thermocouples #4, #5 and #6 

show however a linear distribution. So, one should remind that the fact that the temperature 

distribution is linear is not a criterion to say that temperature measurements are without bias. In fig.6, 

the temperature shift between the two sets of thermocouples is important, the slopes being slightly 

different.  
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Figure 6: Temperature distributions within the PMMA sample (data from tab.2) 

 

 

 

5. Heat flux sensor with wire thermocouples and thin film 

 

Heat flux sensors (HFS) are very useful for the understanding and the control of the thermal phenomena 

coupled or not with other physical, chemical or mechanical processes. HFS should be judiciously designed 

to reduce source of bias in heat flux measurement while ensuring the highest sensitivity. The heat flux can 

be measured by direct methods (see lecture L5). However very often these sensors are mounted directly on 

the surface to characterize and the sensors create disturbance in the surface/environment heat exchange. 

There exists one type of HFS which was designed to limit this perturbation [23] especially for 1D transient 

measurement. As shown on fig.7, a set of microthermocouples is mounted inside the medium at different 

locations [23]. Practically there are welded on one of the two half shells (fig. 8 [24]). 

 

The discussion in this section will be about the location of the implemented thermocouples. The HFS should 

have at least 1 thermocouple if the 2nd boundary condition is well known otherwise at least 2 thermocouples 

are needed. Bourouga [25] has found that the first thermocouple should be located taking into account the 

following inequality:  

10 r  x1  66 r               (8) 

with r the radius of the hole where the thermocouple is mounted. 

 

The first inequality (10 r  x1) comes from the fact that 96% of the temperature drop due to 

macroconstriction is within an hemisphere of radius 10 r [26]. With this condition, the heat flux  or 

temperature at the front face will not be affected by the presence of the first thermocouple.  

 

The second inequality (x1  66 r) comes from inverse methods consideration. The computation time step t 

(supposed here equal to the experimental one) should not be too small to avoid too much sensitivity to 

measurement errors. Typically, the condition at/x1
2 0.01 should be respected [26], where a is the thermal 

diffusivity of the HFS material. 

Therefore, one obtains:  

x1
2

  100at               (9) 

 

The smallest possible t value which can be defined as the response time of a thermocouple which is also 

the characteristic time of the already described 10r hemisphere. As shown by Cassagne [27], this 
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characteristic time is defined by t= 44r2/a  for a 95% development of the thermal constriction within the 

10r hemisphere. Using this t value in (9), one can obtained: x1  66 r 

One should notice that for sensitivity enhancement during heat flux estimation, the first thermocouple 

should be as close as possible to the front face (x1 10 r).  

 

For the second location (x2) corresponding to the 2nd thermocouple or the 2nd boundary condition, its value 

should be as large as possible also for sensitivity concerns [5]. 

 

 

 

 

 

 

 

 

 

 
Figure 7: Heat flux sensor [23]    Figure 8:  Heat flux sensor [24] 

 

 

 

Recent developments in heat flux measurement concern thin film HFS with some advantages such as very 

accurate locations of the temperature sensors (fig. 9 [28] and fig.10 [29]). 

 

 

 

 

 

 

Figure 9: New HFS with thin film technology (wire thickness 30m) [28] 

 

Figure 10: Thin film heat flux sensor (wire thickness 12m) [29] 
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5. Conclusion 

 

In this tutorial, we have illustrated the role of the medium in the temperature sensor time constants and also 

the errors due to the sensor implementation. Temperature and heat flux sensors should be designed and 

implemented in order to minimize the various sources of systematic errors and also to increase the 

sensitivity for the estimation of thermal properties, heat transfer coefficient, heat flux ... Some insights on 

the most favorable thermocouples location were also presented. 
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Tutorial 4: Infrared thermography: materials & buildings  
 

 

L. Ibos1, J. Meulemans2 
1 CERTES, Université Paris-Est Créteil Val de Marne, IUT de Sénart-

Fontainebleau, 240 rue de la Motte, 77550 Moissy-Cramayel, France 

2 Saint-Gobain Research Paris, 39 Quai Lucien Lefranc, 93300 Aubervilliers, 
France 

 
E-mail:  ibos@u-pec.fr 
  Johann.Meulemans@saint-gobain.com 
 
 
Abstract. This training session is devoted to the use of infrared thermography for 
building applications. This session will be divided into two parts. The first part will 
concern metrological aspects of infrared thermography and more precisely the 
determination of surface temperature, and its associated uncertainty, using an infrared 
camera. Uncertainty sources due to the technical characteristics of the camera 
(measurement noise, non-uniformity, thermal drift) and to the physical properties of 
opaque surfaces (emissivity, roughness) will be considered. Surfaces of different 
emissivities will be characterized (spectral emissivity curves will be provided). A 
particular attention will be paid to the determination of the mean radiant temperature. 
The work proposed in this first part will be based on theoretical aspects presented in 
the L4 lecture (“Measurements without contact in heat transfer”). The second part of 
this training session will be devoted to the study of heat transfers in a building wall 
using infrared thermography. A reduced scale model of a building wall including 
thermal irregularities will be used. The work proposed will concern (i) the detection of 
thermal irregularities such as thermal bridges (or lack of insulation) and (ii) the 
estimation of multi-layer wall heat losses (including thermal irregularities). Practical 
work will be done using several infrared cameras equipped with cooled detectors or 
micro-bolometers arrays. 

List of acronyms: 
 

• EOF: Empirical Orthogonal Function 
• FOV: Field Of View 
• FPA Focal Plane Array 
• IFOV: Instantaneous Field Of View 
• IR: InfraRed 
• IWI: Internal Wall Insulation 
• HFM: Heat Flow Meters 
• LWIR: Long Wave InfraRed domain 
• MWIR: Medium Wave InfraRed domain 
• NDT: Non-Destructive Testing 
• NETD: Noise Equivalent Temperature Difference 
• NUC: Non-Uniformity Correction 
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• PC: Principal Component 
• ROI: Region Of Interest 
• SNR: Signal-to-Noise Ratio 
• SVD: Singular Value Decomposition 
• SWIR: Short Wave InfraRed domain 

Nomenclature: 
T temperature, K 

 wavelength, µm 

 emissivity 

 Stefan-Boltzmann constant, 5.67 x 10-8 W.m-2.K-4 

D, d distance, m 

 heat flux, W 

φ heat flux density, W.m-2 

L intensity, W.m-2.sr-1 

R thermal resistance, m2.K.W-1 

k thermal conductivity, W.m-1.K-1 

a thermal diffusivity, m2.s-1 

Cp specific heat, J.kg-1.K-1 

 density, kg.m-3 

h heat exchange coefficient, W.m-2.K-1 

U wall thermal transmission coefficient, W.m-2.K-1 

 linear thermal bridge thermal transmission coefficient, W.m-1.K-1 

 punctual thermal bridge thermal transmission coefficient, W.K-1 

Sub-scripts and upper-scripts 

1D sound region (1D transfers) 

app apparent 

env radiative environment 

i, e indoor, outdoor 

mes measured 

mir mirror 

rad radiative 

ref reference 

S surface 

tb thermal bridge 
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1. Introduction 
 
Infrared thermography is nowadays extensively used for the inspection of buildings [Balaras 
2002, Kylili 2014, Grinzato 1998, Pajani 2012]. This technique allows detecting the presence 
of thermal irregularities, of moisture, or of air leakage [NF 13187]. Thermal irregularities can 
come from the local absence or lack of thermal insulation, or from the presence of thermal 
bridges. The presence of thermal bridges can be due to the structure of the building (for 
instance to the link between a floor and a façade), or to the presence of the thermal 
insulation mechanical fixing system, so-called “integrated thermal bridges” [Farkh 2009]. For 
practical reasons, the work proposed in the second part of this training session will concern 
only the observation and characterization of integrated thermal bridges. The work will be 
based on the use of a reduced scale model of a building wall.  
 
The work proposed in this training session will be based on theoretical aspects presented in 
the L4 lecture (“Measurements without contact in heat transfer”). As seen during this lecture, 
an infrared camera does not directly measure the surface temperature of an object. The 
temperature is computed on the basis of the measured intensity on one hand and on the 
knowledge of influencing parameters: surface emissivity, mean radiant temperature, 
transmittance and temperature of the surrounding atmosphere. In the first part of this training 
session, we will discuss about the importance of the surface temperature correction by 
considering measurements on surfaces of variable emissivity, and by evaluating the 
associated uncertainty. 
 
Before the extensive presentation of the work proposed in this training session in sections 4 

(Tutorial first part : Determination of surface temperature and its associated 
uncertainty using an IR camera) and 5 (Tutorial Second part : Detection and 
characterization of thermal bridges inside a building wall), some theoretical supplements 
and additional information not included in to the L4 lecture are presented in section 2, (for 
metrological aspects) and in section 3 (for building applications). These information have to 
be read before starting the training session. 
 
 

2. Metrological aspects concerning the use of IR cameras for the 
measurement of surface temperatures 
 

2.1 Infrared cameras properties 
 
The aim of this section is to provide additional information on the technical properties of 
commonly used IR cameras and most particularly on cameras that will be used in this 
tutorial. As said before, some aspects already presented in L4 lecture will not be commented 
anymore in this text. 
 

2.1.1 Detectors and Spectral bandwidth 
 
First of all, we have to recall that historically, infrared cameras can be classified into two 
families: 

- cameras using a unique IR detector coupled to a mechanical scanning system to 
form an image of the thermal scene (IR scanning cameras); 
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- cameras using an array of detectors (FPA cameras): in that case, the thermal image 
is obtained by concatenating the individual responses of each elementary detector in 
a 2D matrix. 

 
At this time, the most frequently used cameras are the FPA ones. The spectral response of a 
camera depends mainly on the material used for the detector and on the material used for 
the optics. Some examples of typical spectral response curves are plotted in Figure 2.1. 
 
Some detectors are sensitive in the wavelength domain comprised between 2 and 5 µm 
(InSb detectors for instance), so-called Band II domain or MWIR domain. Some other 
detectors (QWIP or microbolometers for instance) are sensitive in the wavelength domain 
between 7 and 14 µm (so-called Band III domain or LWIR domain). Microbolometers are 
thermal detectors, which means that the thermal response of each individual detector is due 
to the variation of its temperature depending on the absorbed flux. These detectors are not 
cooled, but an internal system integrated to the camera allows compensating the 
temperature drift of the detector. QWIP detectors are quantum detectors, i.e. based on a 
conversion of absorbed photons in electrical carriers. These detectors have to be cooled to a 
low temperature (typically around the liquid nitrogen temperature, 77K) to obtain a high SNR. 
In most cases, this cooling is ensured using a Stirling engine. 
 
LWIR and MWIR domains correspond to spectral bandwidths of high transparency of the 
atmosphere as seen in Figure 2.2. According to the Wien’s law, LWIR detectors are well 
adapted to temperature measurements around ambient temperature (300K), whereas MWIR 
detectors are better suited for higher temperature applications. However, due to the higher 
sensitivity of MWIR detectors, some of them can be used also for ambient temperature 
measurements. Other wavelength domains can also be used for higher temperature 
applications (SWIR or visible domains), as illustrated in Figure 2.3. 
  

 
Figure 2.1 Typical response curves of some IR detectors 
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Figure 2.2: Transmittance of the atmosphere; Adapted from [Cojan 1995] 

 

 
Figure 2.3: Planck’s law and spectral bandwidths of IR cameras 

 
2.1.2 NUC 

 
The non-unifomity correction (NUC) has to be performed in FPA cameras in order to correct 
the fact that all individual detectors have not exactly the same response. The effect of NUC is 
illustrated in Figure 2.4. We compare in this figure two thermal images recorded before and 
after a NUC. The thermal scene observed is a blackbody plate intended to be at uniform 
temperature. Images were recorded using an uncooled microbolometer FPA camera. We 
consider data in the ROI (black rectangle part) drawn on both images. After correction, we 
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observe a small variation of the mean temperature (21.5°C versus 21.0°C), and a slight 
decrease of standard deviation on the ROI (0.7°C versus 1.1°C). 
 

 
Figure 2.4: Comparison of two thermal images recorded before (left) and after (right) NUC; 

uncooled µ-bolometer FPA camera 

 
2.1.3 NETD 

 
As seen in the previous section, non-uniformity correction allows reducing differences 
between responses of elementary detectors of a FPA matrix. However, it still exists a 
measurable difference between individual detectors, although a unique response is expected 
(for instance when observing an extended plane blackbody for instance). These differences 
also come from the electronic circuitry and can be assimilated to a random noise. Figure 2.5 
presents an example of the response histogram of the pixels of a FPA camera. The standard 
deviation of this distribution (plotted in digital levels in Figure 2.5), can be converted in a 
temperature difference, called NETD. Thus, this parameter represents the spatial noise in a 
thermal image. A temperature difference lower than the NETD cannot thus be detected. 
NETD values depend on the detector and on the optic used. The lowest NETD values are 
generally obtained using cameras equipped with cooled IR detectors. 
 

 
Figure 2.5: Example of the computation of an IR camera NETD 
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2.1.4 FOV and IFOV 
 
The Field Of View (FOV) of an infrared camera represents the Horizontal and Vertical 
angles, namely HFOV and VFOV respectively, which can be viewed through the IR lens 
used. The Instantaneous Field Of View (IFOV) represents the view angle corresponding to 
only one pixel. The IFOV is generally expressed in milliradians (mrad), and allows computing 
the size d (in millimeters) of the smallest element that can be seen in a thermal scene, 
according to the simple following relationship: 
 
 𝑑(𝑚𝑚) = IFOV(𝑚𝑟𝑎𝑑) × D(𝑚) (1) 
 
where D is the distance (in meters) between the thermal scene and the lens of the camera 
(see Figure 2.6). 

 
Figure 2.6: FOV and IFOV of a camera; incidence on the size of smallest object that can be 

seen on a thermal scene; example for IFOV = 1 mrad. 

 

 
Figure 2.7: Spectral response curve of FLIR SC7300L; FLIR Data (Left); Spectral response 

curve of FLIR A325 camera with 25° HFOV; FLIR Data, from [Krapez 2012] (Right) 
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2.1.5 Technical data of camera used in this tutorial 
 
In this tutorial, we will use three infrared cameras: FLIR SC7300L, FLIR A325, FLUKE TI32: 
spectral response curves of two of these cameras are plotted in Figure 2.7. For the Fluke 
TI32 camera, we will consider a curve response close to the FLIR A325 has both detectors 
are micro-bolometers arrays. Two of these cameras, are provided with two optics of different 
FOV. Technical characteristics of these devices are provided in Table 1. 
 

Table 1: Technical characteristics of IR cameras used in this tutorial 

Camera FLIR SC 7300L FLIR A325 FLUKE TI32 

Optics Normal Wide angle Normal Normal Wide angle 

FOV 22° × 17° 44° × 36° 25° × 18.8° 23° × 17° 46° × 34 

IFOV 1.2 mrad 2.4 mrad 1.36 mrad 1.25 mrad 2.5 mrad 

Number of pixels 320 x 256 320 x 256 320 x 240 320 x 240 320 x 240 

NETD < 20 mK < 20 mK < 50 mK 50 mK 50 mK 

Minimum distance 60 cm 30 cm 40 cm 15 cm 7.5 cm 

Spectral bandwidth 7.7 – 9.3 µm 7.7 – 9.3 µm 7.5 – 13 µm 8- 14 µm 8 – 14 µm 

 
2.2 Emissivity measurements 

 
As seen in lecture L4, the emissivity of a surface is the ratio between the radiance of the 
considered surface and the radiance of a blackbody at the same temperature. We will give in 
this section some additional information concerning the key factors influencing the emissivity 
and the ways to measure it. Finally, we will illustrate the importance of the knowledge of this 
parameter for the determination of the temperature of a surface using an IR camera. We will 
consider in the following that all materials considered are opaque in the wavelength domain 
considered for the observation. 
 

2.2.1 Parameters influencing the emissivity of materials 
 
Many parameters may have an influence on the emissivity of a material surface. First of all, 
conducting materials such as metals have generally a low emissivity at ambient temperature 
and in the infrared domain, thus these materials are good reflectors. On the contrary, 
dielectric materials exhibit generally a high emissivity in the same conditions. 
 

2.2.1.1 Radiation wavelength 
 
Materials presenting a constant emissivity value upon wavelength are called gray-bodies or 
gray surfaces. Real gray surfaces do not exist but some materials have an emissivity 
presenting only small variations versus wavelength at least in a waveband larger than the 
bandwidth of the camera. In such situation, we can consider valid the gray-body assumption 
for a given camera and a limited temperature domain. Three examples of variation of normal 

emissivity upon wavelength at room temperature are presented in Figure 2.8. In the  band 
corresponding to the sensitivity of the FLIR SC7300 camera, PVC and Aluminum emissivity 
remains quite constant, whereas emissivity of glass is varying between 0.7 and 1. For the 
PVC case, we can consider a constant emissivity on a wide range of wavelength (3 to 16 
µm). Thus, we can consider a same emissivity value using a MWIR or LWIR infrared camera, 
whereas distinct emissivity values have to be considered for glass (We must recall here that 

glass can be considered as an opaque material only for  > 5 µm). 
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Figure 2.8: Example of normal spectral emissivity at room temperature for three smooth 

surface of PVC, Glass and Aluminum [Ibos 2016]. 

 
2.2.1.2 Temperature 

 
The temperature can modify the spectral emissivity of a surface, especially when a phase 
transition of the material occurs. However, in the case of building applications, temperature 
variations of materials are small. Thus, the influence of temperature on spectral emissivity is 
generally neglected. 
 
Nevertheless, in the case of non-gray surfaces, the apparent emissivity computed in a limited 
wavelength band corresponding to the sensitivity bandwidth of the camera may vary with the 
temperature. This is due to the displacement of the Planck’s law curve as a function of 
temperature. This phenomenon is illustrated in Figure 2.9 for the case of Alumina. A non-
negligible variation of emissivity is observed versus temperature. Moreover, as said before, 
total emissivity (range 1-50 µm) is different from apparent emissivity computed in the LWIR 
domain (Band III). 
 

 
Figure 2.9: Example of variation of emissivity versus temperature for a non-gray surface of 

Alumina (Left); spectral reflectance of Alumina (Right); data from [Monchau 2013]. 
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2.2.1.3 Direction of emission 
 
For smooth and homogeneous materials, directional emissivity can be determined from 

theoretical relationships and the complex refractive index n = n0 + j [Lorrain 1979, Kauder 

2005]. In the case of a planar diopter plane, emissivity for two polarizations ε// and ε⊥ is 
defined in Figure 2.10. The directional emissivity is the arithmetic mean of ε// and ε⊥ without 
polarization.  
 
Directional emissivity of smooth surfaces of PVC, Glass and Aluminum (materials presented 
in Figure 2.8) is presented in Figure 2.11. Theoretical relationships are compared to 
measurement performed using the SPIDER instrument [Ibos 2016]. Emissivity values are 
obtained directly using a FLIR SC7300 camera. For both dielectric materials, emissivity value 
is maximum at normal angle. This emissivity remains quite constant for angles lower than 
45°. Then, the emissivity value drops down to zero for grazing angles. This behavior is 
typical for dielectrics. Thus, it is commonly recommended to perform measurements with an 
IR camera for viewing angles comprised between ±45°. For Aluminum surface, emissivity 
increases with viewing angle and then vanishes for angles close to the grazing incidence. 
This behavior is typical for metals. 
 

 
Figure 2.10: Definition of directional emissivity for a planar diopter; adapted from Refs 

[Monchau 2013] [Monchau 2018] 

 
Figure 2.11: Directional emissivity of three smooth surfaces of PVC, Glass and Aluminum 

[Ibos 2016] 
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2.2.1.4 Surface roughness and oxidation 
 
The emissivity of a material depends on the roughness of its surface. The increase of the 
surface roughness tends to increase the surface emissivity. This point has to be considered 
especially for metals that exhibit a very low emissivity when their surface is smooth. 
Moreover, the increase of surface roughness induces a change of reflection. Smooth 
surfaces are specular, whereas rough surfaces are diffuse. An example of variation of 
emissivity of Aluminum versus roughness is presented in Table 2. It is noticeable that the 
surface emissivity is increased tenfold, due to the fact that the surface roughness is close to 
the wavelength of the maximum of emission given by the Wien’s law at 300K. 
 
Oxidation of metallic surface tends to increase the emissivity. However, the increase is not 
constant whatever the wavelength. For instance, we have previously seen the difference 
between emissivity of Aluminum (see Figure 2.8) and of Alumina (see Figure 2.9). 
 

Table 2: Example of variation of the emissivity of Aluminum surfaces due to roughness; 
values taken from Ref [Monchau 2013] 

Surface Roughness Rq (µm) Total hemispherical 
emissivity 

Total normal 
Emissivity 

Polished Aluminum 0.18 0.057 0.050 

Sand-blasted 
Aluminum 

8.9 0.44 0.52 

 
2.2.2 Short review of existing methods for the measurement of emissivity 

 
There are a lot of existing methods for the measurement of the emissivity of materials. These 
methods can be divided into two families: calorimetric methods on one hand and radiative 
methods on the other hand. We will consider in this section measurement methods 
applicable for opaque materials. A complete survey of existing methods, standards and 
commercial portable devices was proposed recently in [Monchau 2018].  
 
Calorimetric methods can be used in static (constant temperature) or transient regime. 
Calorimetric methods allow measuring the total hemispherical emissivity of a material as all 
flux coming from the sample at all wavelengths and directions is considered in the thermal 
balance. In static regime, the sample surface temperature and the heating power provided to 
the sample must be measured to compute the emissivity. In transient regime, the thermal 
capacity of the sample has also to be known.  
 
Radiative methods can also be divided into two families: direct or indirect methods. For direct 
radiative methods, the flux emitted by the surface is directly measured by an IR detector. 
These methods require generally a second measurement onto a blackbody or a reference 
surface (of known emissivity) at the same temperature than the sample. The use of a 
modulated source allows measuring the emissivity without use of an absolute reference. 
Spectral measurements can be performed if the detector used is an IR spectrometer. 
Measurements in a spectral band can be performed by using thermopile or other IR 
detectors. 
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For indirect radiative methods, the emissivity is computed from the directional-hemispherical 
or the hemispherical-directional reflectance of the sample. Then, the directional emissivity is 
computed using the Kirchhoff’s law for opaque materials: 
 

 𝜀∕ = 1 − 𝜌/∩   or   𝜀∕ = 1 − 𝜌∩/   (2) 
 
In that case, the general principle is to illuminate the sample with an IR source and to 
measure the reflected flux with an IR detector. The most common method consists in using 
an IR spectrophotometer equipped with an integrating sphere (see Figure 2.12). This method 
allows performing spectral measurements. An alternative method consists in using a source 
with a modulated temperature. In that case, measurements are performed in a spectral band, 
for instance using thermopile detectors. In both cases, additional measurements on 
reference samples of known emissivity have to be done. All portable devices allowing to 
perform in-situ emissivity measurements are using an indirect radiative method. 

 
Figure 2.12: Principle of measurement of normal-hemispherical reflectance using an 

integrating sphere and a rotating mirror to perform a correction of the sphere factor; Adapted 
from [Monchau 2013] 

 
Figure 2.13: Principle of the determination of the mean radiant temperature. Surrounding 
radiation: (a) heterogeneous medium, (b) uniform, isotropic medium (approximation of the 

real surrounding). Illustration from Ref [Datcu 2005] 
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2.3 Mean radiant temperature 
 
As the emissivity of real surfaces is not equal to unity, a part of the intensity emitted by 
surrounding surfaces is reflected by the observed surface and collected by the IR detector. 
The part of this reflected flux increases as soon as the emissivity of the surface decreases. It 
is thus important to quantify this surrounding flux in order to compute the surface 
temperature. 
 

2.3.1 Principle 
 
In practice, the simplest way to quantify the flux coming from the surroundings of a thermal 
scene consists in placing an infrared mirror directly in the FOV of the camera. This mirror has 
to be highly reflective and as diffuse as possible in order to reflect the flux coming from all 
directions. The surrounding of the thermal scene is considered as a blackbody at a particular 
temperature so-called mean radiant temperature. This principle is illustrated in Figure 2.13. 
 

2.3.2 Practical estimation method 
 
The ASTM E1862-97 standard proposes to use a rough aluminum foil to collect the flux 
coming from the surroundings. In that case, the mean radiant temperature is directly equal to 
the apparent temperature on the mirror surface. This method was tested for the 
determination of building façade temperature (indoor and outdoor conditions) in ref [Datcu 
2005]. This method is applicable for building applications because the emissivity of building 
materials is generally high and the difference between mean radiant temperature and 
surrounding temperature is generally lower than 20K. For other situations where surface 
emissivity is low and/or mean radiant temperature is far from surface temperature, this 
method is no longer applicable. This will be illustrated in the following section. 
 

 
Figure 2.14: Visible and thermal image of a building façade with a low emissivity cladding 

 
2.3.3 Importance of the knowledge of the mean radiant temperature and 

emissivity 
 
Figure 2.14 represents a photograph and a thermal image of a building façade of the Paris-
Est Créteil University. The upper floor of the building was recently restored and a low 
emissivity cladding was used, whereas the rest of the building surface is made of concrete. 
We can see on the thermal image that the apparent temperature on the restored part is 

67/339



 
 
 
 
METTI 8 Advanced School   Ile d’Oléron, France 

Thermal Measurements and Inverse Techniques             Sept. 24th – Sept 29th, 2023 
 

 Tutorial 4: Infrared thermography: materials & buildings – page 16 

roughly equal to the sky temperature, because the main flux coming from this surface is 
reflected flux. 
 
In order to illustrate quantitatively the importance of the surface temperature correction, we 
have plotted in Figure 2.15 the difference between the apparent temperature and the true 
temperature of a surface (in °C) as a function of the surface emissivity and of the difference 
between mean radiant temperature and surface temperature. As said before, we obtain small 
temperature corrections only for high values of emissivity and/or small differences between 
mean radiant and surface temperature. 
 

 
Figure 2.15: Difference between apparent and true temperature of a surface (in °C) as a 

function of surface emissivity and of difference between mean radiant and surface 
temperatures 

 

 
Figure 2.16: Example of IWI typology 
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3. Infrared thermography for the diagnosis of buildings thermal insulation 
 

3.1 Generalities concerning heat transfers inside building walls 
 

3.1.1 Thermal resistance and thermal transmittance 
 
A building wall is generally constituted of a stack of n different layers. Each layer i has a 
thermal resistance Ri depending on its thickness ei and on the thermal conductivity ki of the 
material used: 
 

 𝑅𝑖 = 
𝑒𝑖

𝑘𝑖
  (3) 

 
The total resistance of the wall Rwall (expressed in m2.K.W-1) is the sum of the thermal 
resistances of the n layers: 
 

 𝑅𝑤𝑎𝑙𝑙 = ∑
𝑒𝑖

𝑘𝑖

𝑛
𝑖=1    (4) 

 
Materials used in building walls depend on the typology of the wall and on the expected 
value of the thermal resistance. We will focus in this tutorial on the IWI typology which is the 
most frequently used in France, whose structure is presented in Figure 2.16. 
 
The thermal transmission coefficient U of a building wall represents the power lost by a wall 
for an area of 1 m2 and a temperature difference of 1 K between the indoor and the outdoor 
ambiances (in steady-state conditions). U coefficient is defined by: 
 

 𝑈 =  
1

𝑅𝑠𝑖 + 𝑅𝑤𝑎𝑙𝑙 + 𝑅𝑠𝑒
 (5) 

 
where Rsi and Rse are the internal and the external superficial thermal resistances 
respectively. For the computation of U coefficient, Rsi and Rse values are defined by [ISO 
6946] standard: Rsi = 0.13 m2.K.W-1 and Rse = 0.04 m2.K.W-1. 
 
An example of typical values of thermal resistances of layers of a wall for a IWI structure in 
accordance with the actual french thermal regulation [RT 2012] are given in Table 3. 
According to Equations (4) and (5), this example leads to a wall thermal resistance Rwall = 
4.012 m2.K.W-1

, and consequently a thermal transmission coefficient U = 0.239 W.m-2.K-1. 
 

Table 3: Example of values of thermal resistances of a building wall (IWI structure) 
Layer Material Thickness (m) Thermal 

conductivity 
(W.m-1.K-1) 

Thermal 
resistance 
(m2.K.W-1) 

Interior facing Plaster board 0.013 0.25 0.052 

Insulating 
material 

Glass wool 0.12 0.032 3.75 

Structure 
material 

Concrete 0.2 1.0 0.2 

Exterior facing Façade coating 0.01 1.0 0.01 
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3.1.2 Thermal bridges 
 
The insulation of building walls cannot be continuous due to the necessary presence of doors 
and windows, of junctions between walls and floors or to the insulating layer fixing system, 
for instance. All of these irregularities are called “Thermal bridges”, as they lead to a local 
increase of heat losses and consequently to the U-coefficient value. An increase of the 
energy demand due to thermal bridges up to 30% can be sometimes observed [Theodosiou 
2008]. 
 

3.1.2.1 Junction and Integrated thermal bridges 
 
It is of common use to distinguish between two kinds of thermal bridges: junction or 
integrated thermal bridges. Junction thermal bridges (PTL in French) are mainly due to the 
junctions between the façade and interior walls or floors, and also to the junction between 
doors and windows with the façade. These junctions induce a discontinuity in the insulating 
layer. The impact of junction thermal bridges on the insulation of a wall is strongly dependent 
on the typology of the building [Farkh 2009 ]. Integrated Thermal bridges (PTI in French) are 
due to the mechanical system used to fix the insulating material onto a façade wall. This 
includes for instance the presence of wood stud, metallic rails, metallic or plastic pins… Two 
examples of visualization of additional losses due to thermal bridges by IR thermography are 
provided in Figure 3.1. 
 

   
Figure 3.1: Two examples of visualization of additional losses due to thermal bridges by IR 

thermography: junction floors/façade wall (left image), integrated thermal bridges due to 
metallic rails and screws (right image, from [Douguet 2018]) 

 
3.1.2.2 Heat losses in thermal bridges 

 
In order to quantify the importance of a thermal bridge in the global heat losses of a wall or a 

building, two thermal bridges transmission coefficients are used:  and  coefficients.  

coefficient quantifies additional thermal losses due to linear thermal bridges, whereas  
coefficient quantifies additional thermal losses due to punctual thermal bridges [ISO 14683]. 

As illustrated in Figure 3.2 for the case of a linear thermal bridge, the total heat flux tot 

through a building wall can be separated into a 1D heat flux (1D, flux without any thermal 

bridge) and an additional flux due to the presence of the thermal bridge, labeled tb. 
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Figure 3.2: Scheme of additional heat flux (from [François 2019]) 

 

The  coefficient is defined by [François 2019]: 
 
 𝜓 =  𝐿𝑡𝑏  × (𝑈𝑡𝑏 − 𝑈1𝐷) (6) 
 
where Utb is the transmission coefficient of the entire wall (i.e. including the contribution of 
thermal bridges), U1D is the transmission coefficient without thermal bridges and Ltb is the 
width of the thermal bridge impact zone (heat transfers are supposed to be 1D outside this 
zone). Introducing the heat flux due to the thermal bridge as defined in Figure 3.2, definition 

of  coefficient can be written as follows: 
 

 𝜓 =  
𝜙𝑡𝑏

𝐿𝑧 × Δ𝑇𝑖𝑒
 (7) 

 

where Lz is the thermal bridge length and Tie, the temperature difference between indoor 

and outdoor ambiances. In the same way, the  coefficient is defined by: 
 
 χ =  𝑆𝑡𝑏  ×  (𝑈𝑡𝑏 − 𝑈1𝐷) (8) 
 
where Stb is the area of the thermal bridge impact zone (heat transfers are supposed to be 
1D outside this zone). Recently, Asdrubali et al proposed to define an impact factor Itb to 
quantify the importance of a thermal bridge [Asdrubali 2012]: 
 

 𝐼𝑡𝑏 = 
𝑈𝑡𝑏

𝑈1𝐷
       

𝑖𝑛 𝑠𝑡𝑎𝑡𝑖𝑐 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠
⇒                   𝐼𝑡𝑏 ≅ 

𝜑𝑡𝑏

𝜑1𝐷
   (9) 

 
Hence, linear and punctual transmission coefficients can be expressed as a function of this 
impact factor : 
 
 𝜓 =  𝐿𝑡𝑏  × 𝑈1𝐷  ×  (𝐼𝑡𝑏 − 1) (10) 

 𝜒 =  𝑆𝑡𝑏  × 𝑈1𝐷  ×  (𝐼𝑡𝑏 − 1) (11) 
 

3.2 Different ways to investigate heat losses using infrared thermography 
 
There are two ways to investigate heat losses through a building envelope using IR 
thermography: the passive method and the active method. The passive method consists in 
observing a part of a building (façade wall, roof, window…) from inside or outside of the 
building with an IR camera, during the “normal” use of the building. The observation is 
generally punctual, but it can sometimes also be monitored during a given period of time. In 
the active method, an additional thermal load is applied to a part of a building wall or to the 
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indoor air in order to create a controlled heat flux inside the investigated part of the envelope. 
In that case, the IR observation is monitored during a given period of time. 
 

3.2.1 Passive method 

 
3.2.1.1 Requirements 

 
In the case of the passive method, heat losses throughout a building envelope can be 
observed by IR thermography only if there existing a temperature gradient between the 
inside and the outside of the building. Thus, this method can be used only if the building is in 
its “normal” use. Moreover, the passive method is strongly dependent on the conditions of 
observation: indoor air temperature, local weather conditions, orientation of the investigated 
facade… Thus, the most suitable period for passive observation is the winter period, i.e. 
when there exists an important difference between interior and exterior air temperatures. 
Moreover, to cancel the possible influence of solar radiation on a façade (especially for 
southern facades), observations have to be done preferably in the early morning. An 
illustration of the dependence to weather conditions of a passive IR observation on a 
southern building façade is presented in Figure 3.3. 
 

 
Figure 3.3: Illustration of the dependence to weather conditions of a passive IR observation 

on a southern building façade; top: four IR images of the same façade; bottom: plot of 
temperature vertical profiles along the façade corresponding to each IR image; see text for 

details 
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In case N°1, the apparent temperature is higher on each floor/external wall junction as 
expected when the indoor temperature is higher than outdoor temperature (observation was 
done in the early morning). In case N°2, an opposite effect is noted, because the observation 
was done in the evening of a sunny summer day. In case N°3, it is not possible to visualize 
any thermal bridge as the observation was done during the inversion of the heat flux inside 
the wall (i.e. during the night). In case N°4, no thermal bridges are visible due to the fact that 
an outdoor insulation of the building was done. This example illustrates that in passive mode, 
conclusions on the insulation of a building wall cannot be done if we do not pay attention to 
observation conditions. 
 

3.2.1.2 R or U measurements using passive IR thermography 
 
An international standard was proposed recently to evaluate the U transmission coefficient of 
building walls using IR thermography [ISO 9869-2]. This method is based on the work of 
Kato et al [Kato 2007] and is a variation of a preceding standard [ISO 9869-1] using only 
contact temperature sensors and Heat Flow Meters (HFM). The principle of the method is 
presented in Figure 3.4. The computation of the U coefficient is based on the measurement 
of the indoor surface temperature Tsi of the wall using an IR camera. The knowledge of the 
heat exchange coefficient h and the indoor and outdoor “environment” temperature, Tni and 
Tne, require the use of additional devices as seen in Figure 3.4. U coefficient is then 
computed as follows: 
 

 𝑈 = ℎ × 
𝑇𝑛𝑖− 𝑇𝑠𝑖

𝑇𝑛𝑖−𝑇𝑛𝑒
 (12) 

 

 
Figure 3.4: Principle of the measurement of U transmission coefficient of a building wall 

according to ISO 9869-2 standard 
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As this relationship is valid only in static conditions, it is proposed in the standard to average 
measurements during a period between 3 to 6 days, depending on weather conditions. It is 
seen from Equation 12 that the accuracy of the method is directly dependent on the 
evaluation of the heat exchange coefficient. 
 
Another method (named SEID method) was proposed by D. Pajani to evaluate in-situ the U 
coefficient of a building wall [Pajani 2011]. The method consist in placing an additional 
insulating material (Extruded Polystyrene for instance) of known thermal resistance RRef on a 
part of the wall to characterize (see Figure 3.5). After equilibrium is reached, an IR camera is 
used to monitor surface temperatures of the wall surface Tsi and of the additional insulating 
material TsRef. The method requires also the knowledge of the mean radiant temperature Tmri. 
This method has the advantage to be simple and that only apparent surface temperatures 
are required. Then, the thermal resistance of the wall is computed as follows: 
 

 𝑅 = 𝑅𝑅𝑒𝑓  ×  
𝑇𝑚𝑟𝑖− 𝑇𝑠𝑅𝑒𝑓,𝑎𝑝𝑝

𝑇𝑠𝑅𝑒𝑓,𝑎𝑝𝑝−𝑇𝑠𝑖,𝑎𝑝𝑝
 (13) 

 

 
Figure 3.5: Principle of the SEID method 

 
Another possibility, proposed by to estimate thermal resistance of a building wall is to record 
the surface temperature of a façade using an IR camera during a period of about 7 days and 
to measure simultaneously additional parameters such as indoor and outdoor air 
temperature and absorbed solar heat flux. Then, a simplified 1D heat transfer model is used 
and the thermal conductivity and capacity of an equivalent homogeneous wall are identified 
using an inverse method. Wall thickness has to be known and Rsi and Rse are fixed to 
conventional values [ISO 6946]. An illustration of the method is proposed in Figure 3.6. 
 
A comparison of the applicability of these methods in the case of the characterization of 
façade wall of an occupied house was proposed in [Ibos 2015]. Estimated thermal 
resistances were varying from 2.1 to 4.5 m2.K.W-1 depending on the method used, whereas 
the expected value was equal to 3.8 m2.K.W-1. Uncertainties were about 1 m2.K.W-1. The 
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most accurate method was the one using an inverse method for the estimation of the thermal 
resistance. However, this method requires the longest measurement duration. 

 

  
Figure 3.6: Principle of the estimation of the thermal resistance of a building wall by IR 

thermography and an inverse method; left: simplified 1D model; right: estimated and 
measured temperature after estimation; from [Ibos 2015]. 
3.2.1.3 Thermal bridges characterization 

 
As presented in section 3.1.2.2, the Itb incidence factor can be used to quantify the local 
increase of the thermal transmittance of a wall due to a thermal bridge. Using an IR image, it 
is possible to compute this factor as proposed in [Asdrubali 2012]: 
 

 𝐼𝑡𝑏 = 
∑ (𝑇𝑖 − 𝑇𝑠,𝑝)
𝑁
𝑝=1

𝑁 × (𝑇𝑖 − 𝑇𝑠,1𝐷)
 (14) 

 
where Ti is the air temperature, N is the number of pixels in the considered area, Ts,1D the 
wall surface temperature in the undisturbed zone and Ts,p the surface temperature of pixel p. 
The main drawback of this method is that it requires the computation of the absolute 
temperature which is dependent on many factors, particularly the surface emissivity and the 
mean radiant temperature. Recently, it was proposed to simplify the evaluation of Itb, making 
the following assumption [François 2019]: 
 

 𝐼𝑡𝑏 ≅ 
𝜑𝑡𝑏
𝑟𝑎𝑑

𝜑1𝐷
𝑟𝑎𝑑   (15) 

 
which consists in considering only radiative fluxes. This assumption is true if the air temperature is 
close to the mean radiant temperature (which is realistic indoor) and if the radiative and convective 
heat exchange coefficients can be considered as uniform on the portion of the wall studied (also 
realistic given the small surface temperature difference between thermal bridges and sound areas). 
The surface emissivity must be uniform as well in the considered area, but its value is not required as 
it is possible to work only with surface and mean radiant apparent temperatures: 
 

 𝜑𝑟𝑎𝑑 =  𝜎 (𝑇𝑠,𝑎𝑝𝑝
4 − 𝑇𝑒𝑛𝑣,𝑎𝑝𝑝

4 ) (16) 

 

t (days)
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Tenv,app can be easily estimated according to the procedure described in section 2.3. Finally, it comes 
[François 2019]: 
 

 𝐼𝑡𝑏 = ∑
𝑇𝑆,𝑡𝑏,𝑎𝑝𝑝 − 𝑇𝑒𝑛𝑣,𝑎𝑝𝑝

𝑇𝑆,1𝐷,𝑎𝑝𝑝 − 𝑇𝑒𝑛𝑣,𝑎𝑝𝑝
𝑝𝑖𝑥𝑒𝑙𝑠  (17) 

 
The method was recently tested in laboratory conditions in an experimental building wall with 
known integrated thermal bridges, as seen in Figure 3.7. 
 

 
Figure 3.7: left: IR image of en experimental wall including known integrated thermal 

bridges; right: averaged apparent temperature profiles used for the computation of Itb factor 
[François 2019] 

 
3.2.2 Active method 

 
3.2.2.1 General principles 

 
Active IR thermography consists in recording the variation of temperature of a surface when 
it is submitted to an artificial thermal excitation. This approach belongs to the family of Non-
Destructive Testing (NDT) techniques [Balageas 2016, Maldague 2001]. Active IR has many 
advantages compared to passive thermography in the case of the inspection of buildings: 
 

- There is no need for existing thermal gradient between the interior and the 
exterior of a building, thus this method is less sensitive to weather conditions. 
 

- It is sometimes possible to work only with variations of temperatures that are 
less affected by uncertainties on influencing parameters, particularly on the 
surface emissivity and mean-radiant temperature. 
 

- The applied thermal power or energy density can be controlled precisely and 
adapted to the experimental situation to obtain a significant Signal to Noise 
Ratio and to prevent any damage to the investigated structure. 

 
However, active thermography has also some drawbacks: 
 

- It is required to use additional devices to perform the thermal excitation. 
 

- It is required to record and analyze a sequence of thermal images. 
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Thermal excitations can have different shapes summarized in Table 4. For in-situ building 
applications, the use of “flash” excitation is limited to applications devoted to the 
characterization of the surface of a wall. For instance, it was applied to analyze the presence 
of coatings, of non-emergent cracks or even to reveal the presence of moisture or salt in 
walls of historical monuments [Mouhoubi 2016]. Sine wave or random excitations are at this 
time used mainly for the characterization of materials, but not applied with IR thermography 
for in-situ building application. 
 
Hence, the most frequently used excitation for building inspection is the square-pulse 
excitation, mainly for its simplicity to realize in in-situ conditions. For instance, it was used to 
determine the thermal resistance of building walls in laboratory or in in-situ conditions. In 
works of Refs [Larbi Youcef 2011] and [Yang 2017], the thermal excitation was provided 
using halogen or IR lamps to heat a limited part of a wall. The use of an optical excitation 
allows observing simultaneously the surface temperature variation with an IR camera (front 
face measurement). In [Chaffar 2012], the outside side of a wall was heated with an 
instrumented heating plate while the IR camera was used to record the temperature variation 
onto the opposite face (rear face measurement). Another possibility is to use heating devices 
to increase the air of a room and to visualize heat losses using an IR camera. This principle 
was used for instance in [Douguet 2018] to detect integrated thermal bridges in building walls 
independently of weather conditions. 
 

Table 4: Classical thermal excitations used in active IR thermography 
Method Name Excitation shape Advantages / Drawbacks 

Flash 

 

o Rapid 
o Important temperature increase 
o Expensive devices 
o Limited to the wall surface 

Square-pulse 

 

o Most simple to use 
o Low SNR 
o High power density and excitation duration to 

be adapted to limit temperature increase 
o Possibility to use only the heating phase (Edge 

excitation) 

Sine wave 

 

o Most accurate 
o Low power densities 
o Long measurement durations 

Random Sequence 

 

Intermediate between square-pulse and sine 
wave 

 
3.2.2.1 NDT Analysis methods 

 
To analyze the thermal images sequences recorded an active IR thermography experiment 
on a building wall, it is possible to use common NDT analysis methods. When a thermal 
irregularity is present inside a building wall, a temperature difference is observed on the 
surface during or after the thermal excitation as illustrated in Figure 3.8. The interest of active 
thermography is to increase artificially the temperature contrast on the surface and to 
observe it whatever the atmospheric conditions. A non-exhaustive list of these methods is 
presented in Table 5. These methods are useful to detect defects inside a material. Their 
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application to the detection of thermal irregularities inside a building wall is possible and 
allows sometimes obtaining quantitative information on the properties of these irregularities. 
However, at this time, these methods are not very often used for building applications. 
 

 
Figure 3.8: Illustration of the principle of detection of a thermal irregularity inside a material 

or a building wall 
 

Table 5: non-exhaustive list of NDT analysis methods 
Method name General Principle Some References 

High-order 
statistics 

Computation of a mean, variance, skewness or 
kurtosis image of the sequence 

[Madruga 2010] 
[Vrabie 2012] 

Contrast 
methods 

Computation of absolute, relative or running 
contrast (temperature difference) between 
irregularity and “sound” areas 
Take into account only temperature variation 
since the beginning of excitation 

[Krapez 1994] 
[Maldague 2001] 
 

PPT 
(Pulse-Phase 
Thermography) 

Perform a FFT of the temperature evolution of 
each pixel 
Obtain Modulus and contrast phases images at 
each excitation frequency 
Contrast phase images are low sensitive to 
surface emissivity variations 
Requires a spread frequency thermal excitation 

[Maldague 1996] 
[Maldague 2001] 
[Dumoulin 2011] 
 

TSR 
(Thermographic 
Signal 
Reconstruction) 

Logarithmic polynomial interpolation of 
temperature evolution of each pixel 
Obtain polynomial coefficients maps  

[Shepard 2003] 
[Balageas 2015] 
[Dumoulin 2011] 

SVD 
(Singular Value 
Decomposition) 

Acts like a data compression method 
Thermal images sequence information is 
compacted in a few images (Empirical Orthogonal 
Functions) and associated Principal Components 

[Rajic 2002] 
[Marinetti 2004] 
[Dumoulin 2010] 
[Douguet 2018] 
[Mouhoubi 2016] 
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3.2.2.2 Focus on SVD 
 
One of the most interesting method for building application is the Singular-Value 
Decomposition method. Indeed, SVD allows the extraction of the spatial and temporal 
information from a thermographic sequence in a compact and simplified manner. The SVD of 
an m×n pixels matrix X is a linear algebraic factorization which can be calculated as follows 
[Rajic 2002]: 
 
 𝑿 = 𝑼 × 𝑺 × 𝑽𝑡 (18) 
 
where U is an m×n orthogonal matrix, S is a n×n diagonal matrix (with the singular values of 
X in the diagonal, sorted in descending order) and V t is the transpose of an n×n orthogonal 
matrix: 
 

 

𝑿                                     𝑼                                  𝑺                             𝑽𝑡

(

𝑥11 ⋯ 𝑥1𝑛
⋮ ⋱ ⋮
𝑥𝑚1 ⋯ 𝑥𝑚𝑛

) = (

𝑢11 ⋯ 𝑢1𝑛
⋮ ⋱ ⋮
𝑢𝑚1 ⋯ 𝑢𝑚𝑛

)  (

𝑠11 0 ⋯

0 ⋱
⋮ 𝑠𝑛𝑛

) (

𝑣11 ⋯ 𝑣1𝑛
⋮ ⋱ ⋮
𝑣𝑛1 ⋯ 𝑣𝑛𝑛

)
  (19) 

 
The thermographic sequence must be rearranged so that the columns of matrix X 
correspond to the thermograms at each time (see Figure 3.9): 
 
After applying the SVD on matrix X, the columns of U represent a set of orthogonal statistical 
modes known as Empirical Orthogonal Functions (EOF), which describe spatial variations of 
data. On the other hand, the Principal Components (PC), which represent time variations, 
are arranged row-wise in matrix V t. The first EOF will represent the most characteristic 
variability of the data, the second EOF (denoted further as EOF n°2) will contain the second 
most important variability, and so on. Usually, original data can be adequately represented 
with only a few EOFs. 

 
Figure 3.9: Rearrangement of the thermographic sequence before application of the SVD 

treatment [Douguet 2018] 
 
This method was for instance applied recently to the detection of integrated thermal bridges 
inside building walls as presented in Figure 3.10 [Douguet 2018]. The other advantage of 
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SVD is that it can reduce noise from original sequence by removing high orders of singular 
vectors. Superior orders contain less important information, so if some vectors belong to high 
enough orders, they can be considered as noise. A reconstruction of the thermographic 
sequence (inverse SVD) from the truncated SVD matrices leads to a filtered sequence. 
Moreover, the increase of signal to noise ratio induced by an SVD processing allows then to 
use classical image segmentation methods (such as gradient for instance) to extract edges 
of thermal irregularities and to use micro-bolometers arrays IR cameras instead of cameras 
with cooled detectors. 
 

 
Figure 3.10: Example of SVD analysis of a thermal images sequence allowing the detection 

of integrated thermal bridges [Douguet 2018]. 
 

4. Tutorial first part : Determination of surface temperature and its associated 
uncertainty using an IR camera 
 
As mentioned in the introduction of this article, the first part of this training session will be 
devoted to the determination of the temperature of a surface using an IR camera. We will 
particularly discuss about the importance of the surface temperature correction by 
considering measurements on surfaces of variable emissivity, and by evaluating the 
associated uncertainty. 
 

4.1 Description of the test bench 
 

4.1.1 Structure and operating conditions 
 
The structure of the test bench used in the first part of this tutorial is presented in Figure 4.1. 
An image of this test bench with the measurement devices is also presented in Figure 4.2. 
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The test bench is composed of a metallic plate covered with four coating of different 
emissivity. This front surface will be observed with an IR camera. 
 
A heating film will allow heating the surface of the test bench to a given temperature. A heat 
flow meter was placed between the heating film and the metallic plate. A T-type 
thermocouple is inserted inside this HFM. This allows obtaining the heat flux through the 
front surface metallic plate and its temperature. In fact, the temperature of the front surface 
will be different than the one measured by the thermocouple because of the thermal 
resistance of the metallic plate and the presence of thermal contact resistances between 
each element. Conducting thermal grease is applied between each element in order to 
reduce thermal contact resistances. 
 

 
Figure 4.1: Schematic view of the test bench N°1 

 
4.1.2 Emissivity of materials used in the test-bench of this tutorial 

 
The normal spectral emissivity of each coating covering the front face of the test bench was 
measured using an IR spectrometer equipped with an integrating sphere. This measurement 
method was briefly presented in section 0 and Figure 2.12. Spectral emissivity curves 
obtained are presented in Figure 4.3. Measurements were performed in laboratory at room 
temperature (23 ± 2 °C). We will consider in this tutorial that the spectral emissivity is not 
depending on the temperature. This assumption is acceptable since the surface temperature 
will remain close to room temperature during the measurements. 
 
The four coatings considered are: 

- a black paint (Ref RAL 9005); 
- a white paint (Ref RAL 9016); 
- a copper finish paint; 
- a chrome finish paint. 
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It can be seen from Figure 4.3, that spectral emissivity if black and white coatings in the IR 
domain are quite high and close one the other despite their color difference in the visible 
domain. The presence of metallic particles in chrome and copper coatings, tends to decrease 
their emissivity. 

 
Figure 4.2: Image of the test bench N°1 with measurement devices 

 
Figure 4.3: Normal spectral emissivity of the four coatings used in the test bench N°1 
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Variations of the spectral emissivity as a function of the wavelength are noted, particularly for 
the white paint. However, most important variations observed remain outside of the 
sensitivity domain of the IR cameras used in this tutorial, i.e. LWIR cameras. 
 

4.2 Temperature correction 
 

4.2.1 Recall of the method used 
 
In the L4 lecture, it was shown that the intensity measured by the IR camera is the sum of 
three contributions: 

- the self-emission of the target surface; 
- the reflection on the target surface coming from the environment; 
- the self-emission of the atmosphere between the camera lens and the target 

surface. 
 
This general principle is illustrated in Figure 4.4. This leads to the general equation of the 
measured intensity Lmes: 
 
 𝐿𝑚𝑒𝑠 = 𝜏𝑎𝑡𝑚. 𝜀. 𝐿

𝑜(𝑇𝑠)  + 𝜏𝑎𝑡𝑚. (1 − 𝜀). 𝐿
𝑜(𝑇𝑒𝑛𝑣)  + (1 − 𝜏𝑎𝑡𝑚). 𝐿

𝑜(𝑇𝑎𝑡𝑚) (20) 
 
As measurements are here done in an indoor environment and at a short distance, we will 

consider that the transmittance of the atmosphere atm is equal to unity and consequently that 
its contribution to the measured intensity is negligible. Thus, we obtain the simplified 
equation: 
 
 𝐿𝑚𝑒𝑠 =  𝜀. 𝐿

𝑜(𝑇𝑠) + (1 − 𝜀). 𝐿
𝑜(𝑇𝑒𝑛𝑣) (21) 

 
Hence, in such conditions, to obtain the surface temperature Ts, we have to know the surface 
emissivity ε and the mean-radiant temperature of the environment Tenv. At this stage, it has to 
be recalled that the measured intensity can be directly converted into an apparent 
temperature Tapp by using the camera calibration curve. 
 

 
Figure 4.4: Principle of an IR thermography measurement 
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4.2.2 Determination of the surface emissivities to consider 
 
The first step of the temperature correction to perform is the computation of an apparent 
emissivity of the considered surface. For this operation, we have to consider the spectral 
emissivity curves presented in Figure 4.3. To obtain the apparent emissivity of the surface, 
we have to integrate this curve in the sensitivity domain of the camera by weighting it by the 
Plank’s curve response. For that purpose, the surface temperature is required! In the 
framework of this tutorial, we have a first evaluation of the surface temperature using the 
thermocouple inserted in the HFM. If there is no prior knowledge of the surface temperature, 
it is possible to consider in a first step, a “flat” blackbody response, and then to iteratively 
refine the emissivity correction. 
 

 
Figure 4.5: Example of Raw thermal image obtained on the front surface of test-bench N°1 

(apparent temperature data in °C) 
 

4.2.3 Determination of apparent temperature 
 
Work to be done is the following: 
 

- Check that the emissivity value is fixed to unity in the camera software. In that 
case, thermal images are presented in apparent temperature. 
 

- Record a thermal image of the surface and note the temperature given by the 
thermocouple inserted in HFM (see example in Figure 4.5). 
 

- Open the recorded image and identify the different ROIs to consider. 
 

- For each ROI, compute a mean apparent temperature and a standard 
deviation in each ROI area. 
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Figure 4.6: Error made (expressed in °C) on the evaluation of the mean-radiant temperature 
as a function of mirror emissivity and difference between apparent and mirror temperatures. 

 
4.2.4 Determination of mean radiant temperature 

 
For the evaluation of the mean radiant temperature, we will use the method proposed in the 
[ASTM E1862-97] standard and briefly described in section 2.3.2. For that purpose, place the 
diffusive mirror in front of the test bench surface and take one thermal image of it. Compute 
the mean apparent temperature on the mirror surface and the associated standard deviation. 
If the mirror emissivity is approximated to be near 0 (perfect reflector), then the mean 
apparent temperature obtained on its surface is equal to the mean radiant temperature Tenv. 
 
In the case where the mirror emissivity cannot be considered equal to 0, it is necessary to 

know its temperature and its emissivity, respectively Tmir and mir. Its temperature can be for 
instance measured with a contact sensor (thermocouple or resistive sensor) and its 
emissivity have to be characterized with an additional device (by spectrometry for instance). 
In such a case, we obtain on the mirror surface, the following relationship (atmosphere 
influence is again neglected) [Datcu 2005]: 
 

 𝐿𝑜(𝑇𝑒𝑛𝑣) =
𝐿𝑚𝑖𝑟− 𝜀𝑚𝑖𝑟.𝐿

𝑜(𝑇𝑚𝑖𝑟)

1− 𝜀𝑚𝑖𝑟
 (22) 

 
where Lmir is the intensity measured with the IR camera on the mirror surface. The error on 
the evaluation of the mean-radiant temperature is plotted in Figure 4.6 for mirror emissivity 
lower than 0.1 and a difference between apparent and mirror temperatures ranging between 
-40 and 40°C. 
 

4.2.5 Performing the temperature correction 
 
Once surface emissivity, surface apparent temperature (or surface intensity) and mean 
radiant temperature are known, it is possible to perform the temperature correction for each 
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coating, according to equation 21. An example of temperature correction is presented in 
Table 6. Raw thermal image considered is the one presented in Figure 4.5. We considered a 
mean-radiant temperature value Tenv = 28°C and coatings emissivities plotted in Figure 4.3. 
 
After correction, we observed that temperatures on three first coatings (Black, white and 
copper paint) are close. Due to their high emissivity and a relative small difference (about 
10°C) between the mean-radiant temperature and the apparent temperature, the 
temperature correction on black and white coatings is small (less than 1°C). Due to its lower 
emissivity, the temperature correction on the copper paint is more important (about 8°C). 
 
The Thermocouple inserted in the HFM was indicating a temperature of 41°C during the 
experiment. It is thus expected to obtain a surface temperature slightly lower than this value. 
However, to conclude on the accuracy of this correction, it is required to compute uncertainty 
on the corrected surface temperature. 
 
Finally, we can notice that the temperature correction on the chrome paint coating gives a 
value 8°C higher than the one of the thermocouple. As shown in Figure 4.3, this coating is 
the most reflective of the four used in this experiment. For such low emissivity surfaces, the 
correction is strongly dependent on the mean-radiant temperature and emissivity value used. 
For instance, in the present case, the use of mean-radiant temperature of 30°C instead of 
28°C leads to a corrected surface temperature of 39.6°C, thus close to the expected one. 
Moreover, apparent temperature obtained in highly reflective surfaces can also be influenced 
by non-uniformities of the radiative surrounding environment: we can observe such apparent 
temperature variations on the chrome coating surface in Figure 4.5. 
 

Table 6: Example of comparison of apparent and corrected surface temperatures obtained 
on the four coatings of test bench N°1 using IR image of Figure 4.5. 

Coating Black paint White paint Copper paint Chrome paint 

Tapp (°C) 38.2 38.2 31.2 31.5 

TS (°C) 38.7 38.8 39.3 49.1 

 
4.2.6 Uncertainty analysis 

 
As the surface temperature Ts is not directly evaluated by a measurement device, but 
computed from other quantities, its uncertainty u(Ts) has to be computed by considering 

standard uncertainties on each parameter of equation (21), namely , Tenv and TS. If we 
consider that these parameters are not correlated, the combined standard uncertainty on Ts , 
namely uc(Ts) is given by [GUM 1995]: 
 

 𝑢𝑐
2(𝑇𝑆) =  (

𝜕𝑇𝑠

𝜕𝜀
)
2
× 𝑢2(𝜀) + (

𝜕𝑇𝑠

𝜕𝑇𝑒𝑛𝑣
)
2
× 𝑢2(𝑇𝑒𝑛𝑣) + (

𝜕𝑇𝑠

𝜕𝑇𝑎𝑝𝑝
)
2

× 𝑢2(𝑇𝑎𝑝𝑝)  (23) 

 
Then, the expanded uncertainty U(Ts) is obtained by multiplying the combined standard 
uncertainty by a coverage factor k: 
 
 𝑈(𝑇𝑆) = 𝑘 × 𝑢𝑐(𝑇𝑆) (24) 
 
The value of the coverage factor determines the level of confidence on the measured or 
computed quantity. For many practical measurements, particularly if the objective quantity 
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can be described by a normal distribution, it can be assumed that a value of k = 2 defines an 
interval having a level of confidence of approximately 95% (or 99% for k = 3). The validity of 
this assumption has to be checked by referring to Annex G of the [GUM 1995] reference. 
 

4.2.7 Analysis of results 
 
After evaluation of uncertainties, it is now possible to express the surface temperature result 
for each coating: 
 

 𝑇𝑠 = 𝑇𝑠̂  ± 𝑈(𝑇𝑠) (25) 
 

where 𝑇𝑠̂  is the estimated value of the surface temperature. Surface temperatures evaluated 
by IR thermography can be compared to the temperature value given by the contact sensor 
inserted in the test bench. This evaluation can now be also repeated by “disturbing” the 
thermal scene; this can be done by placing a hot object in the environment, whose emission 
will be seen by reflection of the surface of the test-bench. 
 

5. Tutorial Second part : Detection and characterization of thermal bridges 
inside a building wall 
 
As mentioned in the introduction of this article, the second part of this training session will be 
devoted to the detection and characterization of thermal bridges inside a building wall. We 
will investigate the case of integrated thermal bridges by using two different materials 
simulating the presence of a wood stud or of a metallic rail. To reduce the measurement 
duration, the experiments will be done using a reduced-scale wall. 
 

 
Figure 5.1: Schematic view of the test bench N°2 and of the two measurement 

configurations 
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5.1 Description of the test bench 

 
5.1.1 Structure and operating conditions 

 
The structure of the test bench used in this second part of the training is presented in 5.1. 
The front face, observed using an IR camera, will be constituted by a PVC foam plate. The 
dimensions of this plate are 60 cm x 60 cm. 
 
Behind this first layer, an insulating material (XPS) was placed. Inclusions can be placed 
inside this layer to simulate the presence of an integrated thermal bridge. These inclusions 
are either a pine wood rod or a hollow aluminum tube (inclusions have a square section). 
Both inclusions can also be used simultaneously can be placed vertically or horizontally in 
the insulating layer. As pine wood and aluminum have a higher thermal conductivity than 
XPS, heat flow through the wall will be enhanced. Different possible experimental 
configurations are presented in Figure 5.2. 
 

 
Figure 5.2: Images of the test bench N°2 with different configurations; wood inclusions are 
pine wood rods; metallic inclusions are aluminum hollow tubes; all inclusions have a square 

section of 20 mm x 20 mm 

 
A heating film was placed behind the insulating layer, to artificially create a constant and 
homogeneous heat flux inside the insulating layer. This case study corresponds to the 
configuration N°1 described in Figure 5.1. Finally, another XPS layer is placed behind the 
heating film and finally an OSB plate is used to ensure the mechanical structure of the wall. 
In the configuration N°2 presented in Figure 5.1, we will not use the heating film, but we will 
heat the wall surface either with lamps or heating fans. The edges of the test bench are not 
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insulated. MDF studs are used to maintain all elements in an adequate position during the 
experiments. Several T-type thermocouples are also inserted between each layer of the wall. 
 

5.1.2 Thermophysical properties of materials used in the test-bench 
 
Physical properties of the materials used in the test bench N°2 are reported in Table 7. 
These materials were characterized using the Hot-Disk method. This method allows 

obtaining the thermal conductivity k and the thermal diffusivity a (or the Cp product). 

Materials density  was estimated by weighting a known volume of each material. From 
these values, it is possible to compute the thermal resistance of each layer. 
 
Thermal resistance of the entire wall and of the front part of the wall, i.e. between the heating 
film and the front surface, are reported in Table 8, along with the corresponding U thermal 
transmission coefficient values (refer to section 3.1.1 for computation details). These values 
are given without any thermal bridge included inside the first insulating layer. 
 

Table 7: Thermophysical properties of materials used in the test bench N°2 

Material e 
(mm) 

k 
(mW.m-1.K-1) 

R 
( x 10-3 

m2.K.W-1) 

a 
(mm2.s-1) 

 Cp 
(MJ.m-3.K-1) 

 
(kg.m-3) 

PVC board 5 69 ± 2 72 ± 3 0.165 ± 0.005 0.423 ± 0.18 443 ± 10 

XPS 20 35 ± 1 571 ± 17 0.79 ± 0.12 0.044 ± 
0.006 

32 ± 1 

Pine wood 20 202 ± 19 99 ± 9 0.259 ± 0.026 0.78 ± 0.11 633 ± 6 

Aluminum 
hollow tube 

20 (38 ± 3 ) × 
103 (*) 

0.46 ± 0.03 - 0.685 ± 
0.035 (**) 

761 ± 6 

OSB 15 184 ± 16 82 ± 7 0.234 ± 0.060 0.79 ± 0.13 635 ± 7 
(*) Effective thermal conductivity  and thermal resistance of the Aluminum hollow tube was computed from 
measured value for the Aluminum (214 ± 5 W.m-1.K-1) and by considering a simplified heat transfer model taking 
into account the presence of air inside the tube volume and its geometry. 

(**)  Cp value of the Aluminum hollow tube was computed from measured density and conventional CP value for 

Aluminum (905 J.kg-1.K-1 [Sacadura 2015]). 

 
Table 8: Thermal resistance and thermal transmission of the wall of the test bench N°2 

Configuration R (m2.K.W-1) U (W.m-2.K-1) 

Entire wall 0.64 1.3 

Front part of the wall (from heating film and front surface) 1.3 0.70 

 
5.2 Measurement in static regime 

 
Measurements in static regime are performed using the heating film included in the test 
bench. An example of thermal image obtained (plotted in apparent temperature) is presented 
in Figure 5.3, for the configuration 2-A. In that configuration the vertical thermal bridge 
(metallic tube) and the horizontal thermal bridge (pine wood rod) can be seen in the thermal 
image. As expected, apparent temperature on the metallic thermal bridge is higher than on 
the wood thermal bridge, due to the lower its lower thermal resistance. 
 
Once static regime is reached, work to be done is the following: 
 

89/339



 
 
 
 
METTI 8 Advanced School   Ile d’Oléron, France 

Thermal Measurements and Inverse Techniques             Sept. 24th – Sept 29th, 2023 
 

 Tutorial 4: Infrared thermography: materials & buildings – page 38 

- Record one of several thermal images of the front surface of the wall; if 
several images are acquired, only an average image is required for further 
computations. 
 

- Compute the Itb value for each thermal bridge (refer to sections 3.1.2.2 and 

3.2.1.3 for details) and the corresponding  value. These computations can 
be done using either absolute temperature or apparent temperature. 
 

 
Figure 5.3: Example of raw thermal image plotted in apparent temperature obtained in static 

regime for the configuration2-A presented in Figure 5.2 
 

 
0 min - start of the heating 

 
15 min 

 
30 min 

 
60 min – end of heating 

 
90 min 

 
120 min 

Figure 5.4: Example of raw thermal images plotted in apparent temperature obtained in 
dynamic regime for the configuration2-A, after increasing experiment durations 
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5.3 Measurement in dynamic regime 

 
5.3.1 Using the heating film included in the test-bench 

 
To illustrate the possible visualization of thermal bridges in dynamic regime, we will first start 
using the heating film included in the wall. In this experiment, the film is heated with a 
constant power during one hour. Then, the heating is stopped (relaxation phase). Several 
images are acquired during a total duration of 2 hours. 
 
In Figure 5.4, we have reported six thermal images recorded at different heating and 
relaxation durations. These images are plotted using apparent temperature and using the 
same colormap and thermal range than in Figure 5.3 (from 28.0 to 37.0°C). Again, these 
images were recorded using the configuration 2-A of the test bench. In each image, lines 
indicate the position of linear temperature profiles across both thermal bridges plotted in 
Figure 5.5 for the same experiment durations. 
 

 
Figure 5.5: Example of apparent temperature variations on the surface; left part: vertical 

profile corresponding to the wood rod; right part: horizontal profile corresponding to the metal 
tube 

 
Just before heating, thermal bridges are not visible, because the wall is in thermal equilibrium 
with a stable ambiance, so its temperature is uniform. The vertical metallic thermal bridge 
appears first due its lower thermal inertia. Moreover, its lower thermal resistance allows 
observing rapidly a temperature contrast much greater than the NETD of the IR camera. 
Then, the second thermal bridge (horizontal pine wood rod) appears, due its higher thermal 
inertia, and with a much lower thermal contrast magnitude. After one hour of heating, a 
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quasi-stable regime is reached and we observe a temperature contrast three times higher for 
the metallic thermal bridge (about 4.5K versus 1.5K). 
 

 

 
Figure 5.6: Example of EOFs (top figure) and PCs (bottom figure) obtained after SVD 

analysis (amplitude of PC 1 was divided by 1000) 
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During the subsequent relaxation phase, we observe a rapid decrease of thermal contrast for 
the metallic thermal bridge, again due to its lower thermal inertia. After that, thermal 
signatures of both thermal bridges decrease slowly and remain almost identical one to the 
other. At this stage, the thermal inertia of the whole structure predominates. 
 
In this experiment, as the heating source is placed behind the insulating layer including 
thermal bridges, we are very sensitive to the transmission coefficient of the thermal bridge 
and also its thermal inertia. 
 

5.3.2 Using an external thermal excitation 
 
Another way to detect thermal bridges inside a wall is to use an external thermal excitation 
that can be for instance heating lamps or fans. The experimental conditions remain identical 
as the ones described in the preceding section. At a given time, the heating source is 
switched on and thermal images of the wall surface are acquired at a given sampling 
frequency. 
 
As mentioned before in section 3.2.2, it is possible to use one of the analysis techniques 
commonly used in NDT to identify the presence of thermal bridges. For instance the SVD 
analysis (principle was detailed in section 3.2.2.2) was applied to a sequence of thermal 
images corresponding to configuration 2-A. The result is presented in Figure 5.6. As 
observed, the first three Orthogonal Empirical Functions contain the main interesting 
information of the thermal images sequence. This is confirmed by the associated singular 
values and Principal Components whose amplitude is lower and lower. EOF N°1 can 
generally be assimilated to a mean thermal image that would be computed from the whole 
image sequence. In this experiment, we can see that the contributions of vertical and 
horizontal thermal bridges are seen separately in EOFs N°2 and 3 respectively. 
 
Moreover, with this technique, it is possible: 

- to store only the first EOFs and principal components (data compression); 
- to rebuild thermal images sequence using the first EOFs (filtering). 

 

6. Conclusion 
 
In the first part of this tutorial, we have illustrated a methodology to estimate the temperature 
of a surface from the intensity map (or apparent temperature map) obtained using an IR 
camera. It was shown that this evaluation is sensitive to several parameters, particularly 
surface emissivity and mean-radiant temperature. For surfaces with high emissivity and for 
small differences between surface temperature and mean-radiant temperature, a surface 
temperature can be estimated accurately. However, for low-emissivity surfaces, the result is 
strongly dependent on the knowledge of the mean-radiant temperature and thus estimation 
of a surface temperature becomes difficult. In the second part of this tutorial, we have seen 
that IR thermography is an interesting tool for the characterization of a building wall thermal 
insulation. At this time, quantitative data such thermal transmittance coefficient of a wall or of 
thermal bridges can be estimated in static conditions. Active thermography is interesting to 
detect the presence of thermal irregularities whatever weather conditions. It was shown that 
the use of NDT analysis techniques allows increasing the SNR ratio and make possible to 
use micro-bolometers cameras for such inspections. 
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Abstract – Periodic heating methods for materials thermal characterization are 
commonly used when observable signal/noise ratio or sample thermo stability are low. 
This workshop is intended to illustrate the ways of analysing the sample thermal 
behaviour in order to estimate thermal properties. The experimental apparatus is 
based on cheap heating device and temperature measurement system so as to make 
it adaptable for educational purpose. The thermal modelling is based on complex 
temperature approach (amplitude and phase lag of temperature evolution). The 
parameter estimation procedure is developed (sensitivity analysis, errors sources 
analysis with a particular attention on noise effects, optimal conception of experiment 
...). Two estimation strategies (complex temperature space distribution or frequency 
evolution) are described, illustrated and compared. Additional information on derived 
methods usable on problems with increased geometrical complexity with both 
analytical and finite elements modelling is detailed. 

Nomenclature 

x space variable , m   t time variable, s

e  metallic sample height, m f frequency, Hz  

α diffusivity,  2 1.m s
− ω  period, 1

s
−

µ diffusion length,  m Q  heating flux, 2.W m
−

ρ  mass density,  3.kg m− C specific heat, 1 1. .J kg K− −

k conductivity,  1 1. .W m K
− − ϕ  phase lag rad or °

1. Introduction

Dynamic methods of measuring solid materials thermal properties are based on the
observation of the samples behaviour when submitted to a thermal excitation of known 
characteristics. These dynamic methods are usually classified according to the type of 
thermal excitation, the more usual being the step function, the Dirac pulse, the sine-wave 
modulation and more recently the pseudo-random sequences. Each of these methods 
categories includes advantages and inconveniences that make that either can be more 
applicable in a given configuration. We will only develop here the methods based on a 
periodic excitation, the other categories being illustrated in other workshops of this school. 
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Introduction of periodic methods for determining the thermal parameters of homogeneous 
solid materials is due to Ångström (1863) [1]. The sample is a long thin rod (length >> 
diameter) of which an extremity is submitted to a temperature sinusoidal modulation. The 
thermal parameters are deducted from the evolution of temperature oscillations attenuation 
and phase lag along the bar. Nearly one century later, Cowan (1961) [2] extended this type 
of method to the case of disk-shaped samples (diameter >> thickness) submitted to a 
sinusoidal modulation of flux on one face. Since, the principle has been applied to the 
characterization of multi-layered materials (coating, gluing), orthotropic materials (long fibre, 
woven composites) this from macroscopic scale to microscopic scale [3] and to detect default 
in composites’ materials [4]. 

2. Concepts for periodic heating method

We are now going to introduce specific tools for the use of this kind of periodic methods.
The complex temperatures method will be used for ease modelling of the heat transfer within 
the sample. The lock-in detection will allow extracting the attenuation and phase lag of 
temperature oscillations from a sensor output. 

2.1 Complex Temperatures 

When a solid media submitted to a sinusoidal excitation reached a steady-state, if the 
heat transfer equations are linear (temperature independent parameters), the temperature in 
all point is the sum of a steady component and a sinusoidal component of same period that 
excitation. 

( ) ( ) ( ) ( ) ( ) ( )( )  with cosc s sT ,t T T ,t T A tω ϕ= + = +r r r r r r

where A(r) represents the amplitude and ϕ(r) the phase lag with respect to the excitation, of 
temperature oscillations at location (r) (Figure 1). The sinusoidal component can be written 
as: 

( ) ( ) ( )( ) ( )( ) ( ) ( )( )Re exp exp Re exp
s

T A j j t T j tϕ ω ω= =r r r rɶ

One will call complex temperature the variable ( ) ( ) ( )( )expT A jϕ=r r rɶ  that contains the

information on amplitude and phase of the temperature oscillations. It results from the same 
equations that ( )tT ,r  adapted to the sinusoidal steady state.
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Figure 1: Phase lag and modulus definition 
Thus, 

- the heat transfer equation within the solid
t

T

a
T

∂
∂=∆ 1

 becomes T
a

jT
~~ ω=∆

- the Neumann condition equation ( )cos
T

t
x

λ ω∂− = Φ
∂

 becomes 
T

x
λ ∂ = Φ

∂

ɶ
ɶ

The resolution of the problem is brought back to the one of a stationary problem involving 
stationary limit conditions as well. One will find some examples illustrating the complex 
temperatures methods in [5]. 

2.2 Lock-in detection 

In a general manner, the periodic methods present some advantages when the 
signal/noise ratio on observable output is low. This is linked to the processing of the signal 
coming from the sensor that allows extracting the amplitude and phase of it, even when the 
noise level is high. The implemented technique is the lock-in detection that will be achieved 
by a device or software. 

2.2.1 Lock-in Amplifier (LIA) [6] 

A LIA is a device capable, from any electric input signal and a periodic reference, to select 
the sinusoidal component of same period that the reference contained in the input signal, 
and to calculate both module and phase of this component. In addition to this basic function, 
the LIA significantly decreases the signal band pass and therefore the measurement noise 
band pass. Its functioning is achieved by several stages that are described in Figure 2. 
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Figure 2: Functioning principle of a lock-in amplifier 

2.2.1.1 input signal 

This input will be the electric signal coming from the sensor: its temporal evolution is 
unknown but it contains a sinusoidal component of same frequency that the reference signal. 
This signal can contain a continuous infinity of other frequencies or a discrete series of 
frequencies. 

2.2.1.2 reference signal 

This signal is a periodic voltage used as a reference: it represents the temporal evolutions 
of excitation (mechanical chopper, acousto-optic modulator...). The LIA will extract the 
sinusoidal component of same frequency that the signal of reference. The fundamental 
harmonic of this signal allows defining an origin for the phase lag. 

2.2.1.3 input stage 

This stage is a stage for filtering and formatting the input signal. The operator who decides 
the nature of the filters used adjusts input analogical filters and amplification gains, acting 
here as device calibre selection. 

2.2.1.4 reference stage 

This stage synthesizes two sinusoidal signals of same frequency that the reference, one 
being in phase with its fundamental harmonic and the second being out of phase of 90 
degrees. These signals are R(t) and R90(t) defined by R(t)=cos(2πfrt) and R90(t)=sin(2πfrt). 

2.2.1.5 demodulator 

This stage makes the synchronous demodulation by achieving the multiplication of the 
input signal by R(t) and R90(t) and provides two signals, X(t) and Y(t) defined by X(t)=Se(t)R(t) 
and Y(t)=Se(t)R90(t).  

To illustrate the functioning of the LIA, let us consider an input signal composed of a sine 
wave of same frequency that the reference (fr) and a disturbing second one of frequency fp. 
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S t A f t A f te r r r p p p( ) cos( ) cos( )= + + +2 2π ϕ π ϕ

Let us write X(t) and Y(t) for Se(t). 

))(2cos(
2

))(2cos(
2

)4cos(
2

)cos(
2

)2cos()2cos()2cos()2cos(

)2cos())2cos()2cos(()2cos()()(

prp
p

prp
p

rr
r

r
r
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A

tf
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Both signals, X(t) and Y(t), are the sum of a steady-state component containing the 
information on  modulus and phase, and of periodic components at disturbing frequencies 
2fr, fp-fr and fp+fr. 

2.2.1.6 output filter 

This stage is constituted of a programmable low pass filter applied to X(t) and Y(t) in order 
to eliminate the disturbing periodic components and to select the steady-state component 
only. Proximity between the disturbing frequency fp and fr determines the band pass to be 
used for the low pass filter. Therefore, the LIA takes into account for the output only the part 
of the input signal belonging to the frequency domain centered on fr and of same width that 
the output filter band pass. One finally gets two quantities M = Ar/2cos(ϕr) and  
N =-Ar/2sin(ϕr) that allows modulus and phase calculation according to:

2 2

r
A M N= + and 1

r

N
tan ( )

M
ϕ −= −

To recapitulate, the LIA functioning comprises two steps: 
- the input signal of whatever shape is multiplied by a sinusoidal signal at the reference

frequency. The spectrum of the resulting signal is that of the input signal shifted by the
quantity - fr and +fr

- a low pass filter is then applied to this signal. The output signal is slowly variable and
centred on M/2cos(ϕ) if the component at fr of the entry signal cos(2 )rM f tπ φ× + . 

The LIA extracts, from a signal of whatever shape, the sinusoidal component at a reference 
frequency. 

2.2.2 Lock-in algorithm 

In some cases, it can be impossible to incorporate a LIA in the measurement chain. It is 
the case, for example, when one wants to get a complex temperature mapping (module 

and 
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phase) from a thermography recording. For every pixel (i,j) of the picture, the aim is to 
calculate its phase and amplitude from the recorded thermogram. It is possible to simulate by 
software the functioning of a LIA. Considering a sequence of 512 temperature values noted 
T(ndt), n∈{0,.. ,511} where dt is the sampling time, the algorithm is the following one: 

1. Calculation of X(ndt) n∈{0,..,511} and Y(ndt) n∈{0,..,511} according to

( ) ( )cos(2 )rX n T ndt f ndtπ=  and ( ) ( )sin(2 )rY n T ndt f ndtπ=  

where fr is the heating frequency (reference) 

2. Calculation of M and N according to

511

0

1
( )

512 k

M X k
=

=   et
511

0

1
( )

512 k

N Y k
=

=   

These formulas are valid if the record covers an integer number of heating periods. 

Calculation of temperature modulus and phase according to 

2 2
M M N= +  et 1tan ( )

N

M
ϕ −= −

This educational workshop is based on a cheap heating device in order to illustrate periodic 
methods for thermal diffusivity characterization. 

3. Periodic method for thermal diffusivity identification

3.1. Aims 

In this paragraph, periodic method principle is presented. Heat transfers in a thin metallic 
sample exposed to a periodic excitation are considered. Analytical solution is developed and 
numerical results have to be compared to experimental results obtained for reference 
materials. Early knowledge is thermal system science and numerical analysis. 

3.2. Mathematical modelling 

Let us consider a thin plane metallic sample. Diffusion length is defined by 

2

f

α αµ
ω π

= = and for sample height e  such as e µ≪ , temperature gradients can be

neglected in the sample thickness. Periodic excitation is ( ) ( ) if 0
,

0 if 0

Q t x
Q x t

x

 <
=  ≥

 and a 

moving mask leads to the control of origin position ( )0O x = . Heat transfers are 1D (see

Figure 3).  
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Figure 3: Studied configuration and some experimental results 

Temperature distributions from the initial temperature (assumed to be equal to ambient 
temperature) are described by the following equation: 

( ) ( ) ( ) ( )
2

2

T x,t T x,t
Ce hT x,t ke Q x,t

t x
ρ

∂ ∂
+ − =

∂ ∂
(1) 

Let us consider the quite general following formulation for the periodic heating flux 

( ) if 0
,

0 if 0

j t
Qe x

Q x t
x

ω <
=  ≥

, then complex temperature is: ( ) ( ), , j t
T x t T x e

ωϕ=  where ϕ  is

the temperature phase lag relating to the input excitation. Then previous equation reads as 
follows: 

( ) ( ) ( )2

2

0

0 0

Q if xT x,
j CeT x, hT x, ke

if xx

ϕ
ωρ ϕ ϕ

<∂ 
+ − =  ≥∂ 

(2) 

Introducing 1c j Ce hωρ= + , several situations are encountered: 

 for 0x > : ( ) ( )2

1 2
0

T x,
c T x, ke

x

ϕ
ϕ

∂
− =

∂
. Solution is ( ) 1

1

c
T x, K exp x

ke
ϕ

 
= ±  

 
. Since 

temperature evolution is finite ( ( ) 0T ,ϕ∞ = ) then ( ) 1
1

c
T x, K exp x

ke
ϕ

 
= −  

 
. 

 for 0x < : ( ) ( )2

1 2

T x,
c T x, ke Q

x

ϕ
ϕ

∂
− =

∂
. Solution is ( ) 1

2

1

c Q
T x, K exp x

ke c
ϕ

 
= ± +  

 
. 

Since ( )( )T ,ϕ−∞ < ∞  then ( ) 1
2

1

c Q
T x, K exp x

ke c
ϕ

 
= + +  

 
, 
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 for 0x = , temperature continuity 1 2

1

Q
K K

c

 
= + 

 
 and temperature gradient continuity 

( )1 2K K− =  leads to: 1

12

Q
K

c
= et 2

12

Q
K

c
= −  . 

Thus solution of equation (2) is: 

( )

1

1 1

1

1

0
2

0
2

Q Q c
exp x if x

c c ke
T x,

Q c
exp x if x

c ke

ϕ

  
− + <   

  = 
  − ≥   
 

A thermal system time characteristic is 
Ce

h

ρτ =  , then: 

( ) 1
0

1
2

Q
T x, exp j x if x

Ce j

ωϕ
α ωτωρ

ωτ

  = − + ≥       + 
 

 

and for 
1

z j
ωτ

= +  ; 2 21
1z ω τ

ωτ
= +  and 

1 1

2 2

z z

z jωτ ωτ
+ −

= + , one obtains: 

( ) ( )
2 2

1 1 1
0

2 1

Q j x
T x, exp z j z if x

Ce

ωτ
ϕ

µ ωτ ωτωρ ω τ

  −
= − + + − ≥    +   

Thus, the following formulation is proposed ( )( )1Arg jθ ωτ= − :

( ) 1 1
0

2

Q x x
T x, exp z exp j z if x

Ce
ϕ θ

ωρ µ ωτ µ ωτ
    

= − + − − − ≥        
    

 

For 1ωτ << , 1z ≈  and temperature modulus for 0x ≥  is:

( ) 0
2

Q x
T x, exp if x

Ce
ϕ

ωρ µ
 ≈ − ≥ 
 

(3)
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Moreover for 1ωτ << , then 
2

πθ ≈ −  and for 0x ≥ :

( )( ) 0
2

x
Arg T x, if x

πϕ ϕ
µ

= ≈ − − ≥ (4) 

3.3. Analysis 

In the previous paragraph, it has been shown that temperature modulus and phase lag 
induced by a periodic excitation depend on thermal diffusivity of the studied material. Then 
two approaches are proposed (Figure 4). 

Figure 4: 2 configurations 

3.3.1.  Spatial scanning 

• Measurements of temperature modulus at point x  for several mask positions are
performed and equation (3) is written as:

( )
2

Q x
log T x, log

Ce
ϕ

ωρ µ
 

≈ − 
 

(5) 

Drawing ( )log T x,ϕ versus x , gives a straight line and coefficient is equal to 

1 fπ
µ α

− = −  (see Figure 5 for an illustration). 
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Figure 5: Temperature modulus for spatial scanning 

• Measurements of temperature phase lag at point x  for several mask position are

performed. Equation (4) leads to a straight line; coefficient is 
1 fπ
µ α

− = −  (see Figure

6 for an illustration).
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Figure 6: Phase lag for spatial scanning 

Results are obtained with the following data: 

Table 1:  
ρ C α  Q e h

3.kg m
− 1 1. .J kg K

− − 2 1.m s
− 2.W m

− m 2 1. .W m K
− −

silver 10500 230 6171 10− 35 10 410− 10

copper 8940 380 6114 10−

aluminiu
m 

2700 860 686 10−

steel 7850 490 612 10−

Table 1: Parameters 

According to the previous data, it is obvious to verify that for the studied materials, 
τ > 23s  . If f ≥ 0.1Hz  then ωτ >14  and it is verified that ωτ ≫1 and solutions given in 
equations (3) and (4) are assumed to be correct. 
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3.3.2. Frequency scanning 

• Temperature modulus measurements at point x  for a fixed mask position are
performed for a frequency scanning and equation (3) is written as:

( )
4

Q f
log T x, log log f x

Ce

πϕ
πρ α

 ≈ − − 
 

(6) 

Drawing ( )( )log T x, log fϕ +  versus f , gives a straight line, coefficient x
π
α

−

(see Figure 7 for an illustration). 
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Figure 7 : Temperature modulus  for frequency scanning 

 Phase lag measurements at a given distance to the mask lead for a frequency

scanning  to a straight line while drawing ( )fϕ : ( )( )
2

Arg T x, x f
π πϕ
α

= − −  (see 

Figure 8 for an illustration). 
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Figure 8 : Phase lag  for frequency scanning 

3.4. Experimentations 

Measurements obtained on thin metallic samples are presented in order to verify 
theoretical results considered above. For well-known materials two experimentations are 
proposed. Firstly, thermocouple is fixed to the sample and mask is moved for a spatial 
scanning. Then temperature modulus and phase lag measurements are obtained and results 
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are compared to Figures 5 and 6. Secondly, mask and thermocouple are fixed and a 
frequency scanning is performed. Modulus and phase lag measurements obtained for 
several excitation frequencies are compared with theoretical results presented in Figures 7 
and 8. 

4. Sensitivity analysis

4.1. Aims 

In this paragraph, thermal system analysis is investigated and sensitivity analysis is 
proposed in order to estimate the effect of mathematical model input uncertainties. In such a 
way, it is essential to verify that temperature observations are efficient to identify material 
diffusivity. Moreover, uncertainties of input parameters which are assumed to be known have 
not to dramatically affect identification result. Then optimal design of experimental bench can 
be studied.  

4.2. Presentation 

Sensitivity analysis is performed in order to estimate the effect of the variation of model 
input parameter ( )ip  on a model output ( )is . In order to ensure that observation

{ }( ),is T ϕ∈ depends on diffusivity in the studied configuration, it is important to verify that

is

α
∂
∂

 is maximum. In such a way, due to uncertainties of well-known parameters, we have to 

verify that i

i

s

p

∂
∂

is minimum ( ( )ip f≠  or ( )ip x≠ ). Then, several situations are presented: 

 Spatial scanning

- Modulus measurement: it is important to verify that
T

α
∂
∂

 is great and that (see 

equation 5) 
T

Q

 ∂ 
 ∂ 

, 
T T T

C eρ
 ∂ ∂ ∂ 

= = ∂ ∂ ∂ 
 , 

T

f

 ∂ 
 ∂ 

 are minimum. Comparisons are 

proposed on the same figure while i

i

T
p

p

 ∂ 
 ∂ 

 are drawing versus x . 

- Phase lag measurement:
ϕ
α

∂
∂

 has to be maximum and 
f

ϕ ∂
 ∂ 

 has to be minimum.

 Frequency scanning:

- Modulus measurement:
T

α
∂
∂

has to be maximum and (see equation 6) 
T

Q

 ∂ 
 ∂ 

, 

T T T

C eρ
 ∂ ∂ ∂ 

= = ∂ ∂ ∂ 
 , 

T

x

 ∂ 
 ∂ 

 have to be minimum. Comparisons are proposed on 

the same figure while i

i

T
p

p

 ∂ 
 ∂ 

 are drawing versus f . 
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- Phase lag measurement:
ϕ
α

∂
∂

 has to be maximum and 
x

ϕ∂ 
 ∂ 

 has to be minimum.

Sensitivity functions are derived from equations (3) and (4). Let us consider the following 

notations ; ; exp
2

Q f f
A B E x

Ce

π π
ωρ α α

 
= = = −  

 

scanning observation Sensitivity functions 

spatial 

modulus 

T
α

α
∂
∂

T
Q

Q

∂
∂

 and 
T

f
f

∂
∂

T T T
C e

C e
ρ

ρ
∂ ∂ ∂

= =
∂ ∂ ∂

phase lag ϕα
α

∂
∂

 and f
f

ϕ∂
∂

 

frequency 
modulus 

T
α

α
∂
∂

T
Q

Q

∂
∂

 and 
T T T

C e
C e

ρ
ρ

∂ ∂ ∂
= =

∂ ∂ ∂
T

x
x

∂
∂

phase lag ϕα
α

∂
∂

 and x
x

ϕ∂
∂

 

Table 2: Sensitivity functions 

Sensitivity functions for a steel sample are presented in Figures 9, 10, 11 and 12. 
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Figure 9: Modulus sensitivity for spatial 
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Figure 11: Modulus sensitivity for 
frequency scanning 
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Figure 12: Phase lag sensitivity for 
frequency scanning 

Sensitivity functions for a steel sample are analysed as follows: 
• Figure 9: for temperature modulus observation during a spatial scanning, it is important

to not take into account measurements near to the mask or too far. An intermediate
distance has to be chosen. Sensitivity to frequency f  is low enough but other input
parameters Q , ρ , C , e  have too be carefully known. 

• Figure 10 and 12: for phase lag measurements for spatial or frequency scanning it is
crucial to well determine the mask position x .

• Figure 11: for temperature modulus measured during a frequency scanning, it is better
to avoid low or high frequencies. Intermediate frequency range has to be investigated.
Sensitivity to position x  is important but for the other parameters Q , ρ , C , e  
sensitivity is low enough. 

Thus in the studied configuration several remarks are proposed: 
• it is crucial to well determine the mask position in order to minimise the uncertainty on

input parameter x ,
• if the excitation frequency is not well known then diffusivity can be identified with

temperature modulus measurements during a spatial scanning in an intermediate
domain,

• If at least one input parameter (Q , ρ , C , e ) is not well known then a frequency
scanning in an intermediate frequency range can lead to good estimation of the 
diffusivity.  

Several fields of interests can be developed, such as the optimal design for the 
experimental bench in order to optimise the signal / noise ratio. 

5. Diffusivity identification

Once the thermal model has been established, the previous study of sensitivies gives the 
optimal experimental conditions and allows estimating the error range on identified properties 
according to measurement errors on experimental parameters. The sample being subjected 
to a periodic heating (system input), an appropriate sensor is used to measure the modulus 
and phase lag of the temperature field (system output) at a given location. A thermal transfer 
model allows the calculation of theses output at any location knowing the heating input and 
the thermal parameters controlling the system (diffusivity and Biot number). These thermal 
properties are identified by minimizing the measurement-calculation difference. Various 
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criteria for this identification can be considered and according to the students’ knowledge, 
several studies based on several cost function determination are proposed; for example [7]: 
- Quadratic cost functions which are by far the most commonly used because of their

intuitive appeal. Such an estimator is usually called a weighted least square estimator,
- Weighted sum of absolute values of error (weighted least-modulus estimators) are used

while very large errors are encountered since penalization is less than for quadratic costs.

Estimator robustness can also be investigated in order to study if its performance does not 
deteriorate too much when uncertainties are considered on the noise distribution. 

6. Implementation of a finite element method

6.1. Aims 

In this paragraph the interest of the implementation of a finite element method (FEM) is 
shown. The aim is to validate hypothesis which have been considered in the second 
paragraph for the determination of an analytical solution. Previous knowledge about 
numerical resolution of partial differential equation and FEM software are required. 

6.2. Presentation 

For large material thickness, heat transfers in the sample are not described by equation 
(1), and the following partial differential equations system is considered in spatial domain 

( ), ,
2 2

e e
x y

  Ω = ∈ × −    
ℝ , where n

�
is the normal vector exterior to boundary 

, ,
2 2

e e
x x

      Γ = − ∪      
      

(see Figure 13).
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Figure 13: 2D geometry for FEM implementation 
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( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( )

0

2

0 0

T x, y;t
C k T .,t x, y ,t T

t

T x, y,t e
k hT x, y,t Q x, ;t x, y ,t T

n

T x, y, x, y

ρ Ω

Γ

Ω

∂
− ∆ = ∀ ∈ ×

∂
∂  − = − ∀ ∈ × ∂  

= ∀ ∈

�

Previous system is solved by a FEM (with an adapted discretization in space and time) in 
order to estimate for the studied material if the sample thickness e  is too large. Limit 
thickness corresponds to isomodulus and isophaselag which do not correspond to equations 
(3) and (4).

In such a framework, CPU time can be reduced by introducing complex temperature.
According to notations presented in paragraph 2.2 ( ) ( ), , , , j t

T x y t T x y e
ωϕ= , the following

system has to be solved: 

( ) ( ) ( )
( ) ( ) ( )

0

2

Cj T x, y, k T x, y, x, y

T x, y, e
k hT x, y, Q x, x, y

n

ρ ω ϕ ϕ Ω
ϕ

ϕ Γ

− ∆ = ∀ ∈
∂  − = − ∀ ∈ ∂  

�

Resolution of previous system using a FEM leads to the determination of modulus and 
phase lag of ( )T x, y,ϕ  which are compared with analytical solutions given in equations (3)

and (4). 

In such a framework, hypothesis 1
Ce

h

ωρωτ = ≫  can also be investigated.

7. Concluding remarks

In this workshop, periodic methods are exposed in order to identify thermal diffusivity. A
experimental bench is developed for educational purposes. Based on this easily 
understandable configuration, several aspects can be investigated: heat transfer modelling, 
complex temperature, analytical resolution, sensitivity analysis, optimal design, numerical 
simulation, parametric identification, finite element method. Gradual difficulties can be 
proposed to students in order to improve their knowledge about identification by periodic 
method and thermal characterisation. 
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Some questions for understanding 

Q 1.1 Complex temperature 
Assuming that the temperature within the material subjected to sinusoidal excitation satisfies 
the following system of equations: 

( )

1

cos

s
s

s

s

T
T

t

T
t

x

α

λ ω

∂ ∆ = ∂


∂− = Φ
 ∂

Deduce the system of equation satisfied by � ( )T x  from the system of equations satisfied by

sT . The excitation can be considered in the form exp( )F F j tω= . What can we say about 
modulus and phase lag of temperature oscillations? 

Q 1.2 Lock-in Amplifier 
Express the modulus rA   and the phase lag rϕ   according to the data XXX and YYY. 

Q 1.3 Study of a thin metallic sample 
Calculate the diffusion lengths (unit?) for the metals whose properties are defined in the 
following table. What can we say about that? 

ρ  C λ  
µ  for
0.01 Hzf =

µ  for
10 Hzf =  

3.kg m
− 1 1. .J kg K

− − 1 1. .W m K
− −

Silver 10500 230 413 
Copper 8940 380 387 

Aluminium 2700 860 200 
Steel 7850 490 46 

Considering the previous materials and the table below, calculate the minimum value of the 
time constant τ  and check that 1ωτ >>  for 0.1 Hzf ≥ . 

Q

2.W m
−

e

m

h
2 1. .W m K

− −

5.103 10-4 10 

For 0x ≥ , assuming that 1ωτ ≫ , simplify z  and θ  in order to express 

 ( )T x,ϕ  depending on Q, , ,C,e, xω ρ  and µ . 

 ( )( )Arg T x,ϕ ϕ=  depending on x  and µ .

Q 1.4 Spatial scanning analysis 
Using the results of the previous question, what can be said: 

 Of the plot of ( )log T x,ϕ  versus x ; give the corresponding equation. 
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 Of the plot of the phase lag ϕ  versus x ; give the corresponding equation.
Can the diffusivity of the studied material be deduced from these plots? 

Q 1.5 Frequency scanning analysis 
Using the results of the previous question, what can be said: 

 Of the plot of ( )log T x, log fϕ +  versus f ; give the corresponding equation.

 Of the plot of the phase lag ϕ  versus f ; give the corresponding equation.

Can the diffusivity of the studied material be deduced from these plots? 

Q 1.6 Sensitivity analysis 

Complete the following table by expressing the sensitivity functions considering the following 

notations ; ; exp
2

Q f f
A B E x

Ce

π π
ωρ α α

 
= = = −  

 
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scanning observation Sensitivity functions Plot 

spatial 

modulus 

T
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∂
∂

T
f

f

∂
∂
T T T

C e
C e

ρ
ρ

∂ ∂ ∂
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∂ ∂ ∂

phase lag 
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α

∂
∂

f
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ϕ∂
∂
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α
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∂
∂
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Q
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∂

T T T
C e

C e
ρ

ρ
∂ ∂ ∂
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∂ ∂ ∂
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x
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∂
∂
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α

∂
∂

x
x

ϕ∂
∂
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The sensitivity functions of the modulus are plotted in the following Figure (material: steel; 
spatial scanning; the excitation frequency is arbitrarily set to 0.1 Hzf = ) 
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sensitivity functions of the modulus in spatial scanning 

For a spatial scanning is it wise to consider measurements close to the origin 0x = ? Far 
from the origin? What seems to be the optimal observation area? What can we say about the 
sensitivity functions represented by the purple and green curves? 
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Sensitivity functions of phase lag in spatial scanning 

For a spatial scanning, what can we say about the sensitivity functions of the diffusivity and 
the frequency? If the excitation frequency is poorly controlled, what can be said about 
identifying diffusivity using phase lag measurements in spatial scanning ? 
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Using appropriate software, draw curves representing sensitivity functions of the modulus 
considering a frequency scanning in between 0.1 and 1 Hz at a distance set to 0.01m. 
Analyse the results as much as possible. 

Using appropriate software, draw curves representing sensitivity functions of the phase lag 
considering a frequency scanning in between 0.1 and 1 Hz at a distance set to 0.01m. 
Analyse the results as much as possible. 

For each of the following questions, choose the best answer: 

Question Answer Choice 

If, during the experiment, uncontrolled variations of Q  

or e  occur, should we carry out: 

a modulus analysis 
a phase lag analysis 





If the origin position 0x =  is not known accurately

should we carry out: 

a spatial scanning 
a frequency scanning 





If the excitation frequency is noisy, a spatial scanning 
is performed and   

a modulus analysis 
a phase lag analysis 





Experiments for the identification of the diffusivity considering a spatial scanning. 

Experiments for the identification of the diffusivity considering a frequency scanning. 

Special features if time and appropriate software… 

The purpose here is to implement a finite element method to simulate heat transfers in the 
material. The validity of certain hypotheses made when solving the direct problem are tested. 
The first hypothesis concerns the relationship between the diffusion length and the thickness 
which allows for a sufficiently fine sample to consider a simplified formulation of the heat 

balance. Particular attention will be paid to visualizing the importance of the ratio e
µ . The

second hypothesis allowing expressing by a simple expression the modulus and the phase 
lag will be validated by checking the concordance between the analytical solution and the 
numerical solution. 
The main pedagogical objective is the use of finite element software to test experimental 
configurations. 

Why for a thick material the following equation does not describe the heat transfer in the 
studied sample? 

( ) ( ) ( ) ( )
2

2

T x,t T x,t
Ce hT x,t ke Q x,t

t x
ρ

∂ ∂
+ − =

∂ ∂

Considering the sample of thickness e  the studied spatial domain is defined by 

( ), ,
2 2

e e
x y

  Ω = ∈ × −    
ℝ , n

�
 is the normal external vector to , ,

2 2

e e
x x

      Γ = − ∪      
      

: 
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Heat transfers are described by the following system: 
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The objective is to put in evidence that for a larger thickness of the sample, temperature 
gradients appear in between the upper and the lower surfaces. Which material (silver, 
copper, aluminium, steel) is the most likely to encounter this situation? Are gradients more 
susceptible to appear at high frequency or low frequency?  

ρ  C λ  
µ  for
0.01 Hzf =

µ  for
10 Hzf =  

3.kg m
− 1 1. .J kg K

− − 1 1. .W m K
− −

Silver 10500 230 413 
Copper 8940 380 387 

Aluminium 2700 860 200 
Steel 7850 490 46 

Simulate the problem describes by the (S) system considering a steel sample of 6 mm thick 
subjected to 25000 .Q W m−=  at frequency of 0.1 Hzf =  with a heat transfer coefficient 

2 110 . .h W m K− −= . Particular attention will be paid to the discretisation in space and time 
which must be judicious. 
What temperature difference is observed under the moving mask (at x = 0 ) between the 
upper and the lower surface after 10 seconds ? 
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Tutorial 5: Periodic heating methods for materials thermal characterisation – page 25 

Calculate from the simulated data the phase lag over the first 10 seconds. Compare with the 
values predicted with the analytical solution at 1 mmx = . 

Same questions with a steel sample of 1 mm thick? 
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Abstract. The aim of this tutorial is to show the interest of using modal reduction to
solve inverse problems. The tutorial is structured in two parts. The �rst one concerns
the construction of the modal reduced model from an already known detailed model
(�nite elements). The Dirichlet-Steklov base, as well as di�erent reduction techniques
(temporal truncation, Energetic criteria) will be investigated. The second part deals
with solving an inverse problem by using modal reduced models. During this work,
we will show the in�uence of the order of the reduced model on the estimation results
and on the calculation times. An example of an estimation of boundary conditions or
thermo-physical parameter characterization will be treated. The di�erent algorithms
will be coded by participants using Octave software
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Chapter 1

Decomposition on a Dirichlet-Steklov

base

1.1 Position of the problem

Let Ω a domain closed by its boundary Γ. The spatio-temporal evolution of temperature is
modeled by the heat equation:

∀M ∈ Ω,∀t ∈ R+ ρcp
∂T

∂t
= ∇ · (k∇T ) + Π, (1.1)

∀M ∈ Γ, ∀t ∈ R+ k∇T ·n = h(Text − T ) + ϕ, (1.2)

∀M ∈ Ω, t = 0 T = Ti, (1.3)

where n is the outward facing normal to Γ, Ti is the initial temperature, Text the surrounding
temperature, and ϕ a received heat �ux density.

Figure 1.1: Physical domain

1.2 Variational formulation

Let suppose that T is su�ciently regular, for example T ∈ H2(Ω) (T ∈ L2(Ω), ∂T ∈ L2(Ω),
∂2T ∈ L2(Ω)). Let f a function belonging to the same functional space. The variational

3
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formulation is obtained by multiplying Eq. (1.1) by f and by an integration on Ω.∫
Ω
ρcp

∂T

∂t
fdΩ =

∫
Ω
∇ · (k∇T )fdΩ +

∫
Ω

ΠfdΩ. (1.4)

Virtually, the solution is searched in H1(Ω): with the Green-Ostrogradski theorem, Eq. (1.4)
writes: ∫

Ω
ρcp

∂T

∂t
fdΩ = −

∫
Ω
k∇T ·∇fdΩ +

∫
Γ
k∇T ·nfdΓ +

∫
Ω

ΠfdΩ. (1.5)

Now T only has to be once di�erentiable (so it can be de�ned in H1(Ω)). Boundary conditions
appears by replacing k∇T.n thanks to Eq. (1.2). The weak variational formulation is then
obtained:

De�nition 1.2.1 Find T ∈ H1(Ω) such that for all f ∈ H1(Ω)∫
Ω
ρcp

∂T

∂t
fdΩ = −

∫
Ω
k∇T ·∇fdΩ−

∫
Γ
hT fdΓ +

∫
Γ

(hText + ϕ) fdΓ +

∫
Ω

ΠfdΩ. (1.6)

The following operators are de�ned:

∀u, v ∈ H1(Ω) CΩ(u, v) =

∫
Ω
ρcp u v dΩ;

∀u, v ∈ H1(Ω) KΩ(u, v) =

∫
Ω
k∇u ·∇v dΩ;

∀u, v ∈ H1(Ω) H(u, v) =

∫
Γ
hu v dΓ;

∀u ∈ H1, ∀Π, Text ∈ L2(Ω) L(u) =

∫
Γ

(hText + ϕ)u dΓ +

∫
Ω

Πu dΩ.

Equation (1.6) writes on a condensed form:

CΩ(Ṫ , f) = −KΩ(T, f)−H(T, f) + L(f). (1.7)

1.3 Modal formulation

The decomposition of a thermal problem with non homogeneous boundary conditions on a
classical base is inconvenient. First, the sliding/dynamic separation is not satisfying, as the
resolution of the sliding temperature still involves a large size problem. Second, if the bound-
ary conditions change, the correct reconstruction of the thermal �eld becomes (theoretically)
impossible, as the ratio h = k∇Vi ·n

Vi
is �xed. For the same reason, it is hopeless to treat

properly a problem with a non-linear conductivity with that kind of modes. Another base is
thus de�ned, which is the gathering of two bases.

1.3.1 Dirichlet Base

Dirichlet base is classical. It is de�ned by the eigenmodes of the Laplace operator with a null
value on the boundary:

De�nition 1.3.1 Dirichlet base is de�ned by the set of pairs
(
λD, V D

)
∈ R+ \ {0} ×H1

0 (Ω)
solutions of the following eigenvalue problem:{

Ω −∇ ·

(
k∇V D

)
= λD ρcpV

D,

∂Ω V D = 0.
(1.8)
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Eigenvectors V D are named Dirichlet modes. The eigenvalues λD, associated to each vec-
tor V D, have the dimension of frequency, and their inverses are characteristic time of the
associated eigenmodes. The weak variational formulation reads then as:

De�nition 1.3.2 Find
(
λD, V D

)
∈ R+ \ {0} ×H1

0 (Ω) such as ∀u ∈ H1
0 (Ω).

KΩ(V D, v) = λDCΩ(V D, v) (1.9)

The following orthogonality properties are veri�ed:

∀i, j ∈ N, KΩ(V D
i , V

D
j ) = δij ,

CΩ(V D
i , V

D
j ) =

δij

λDi
,

(1.10)

with δij the Kronecker delta.
The set of Dirichlet modes {V D

i }i∈N forms an in�nite but countable base of the Hilbert space
H1

0 (Ω).

1.3.2 Steklov base

De�nition 1.3.3 Steklov base is de�ned by the set of pairs
(
λS , S

)
∈ R+×H1/2(∂Ω) solutions

of the following eigenvalue problem:{
Ω −∇ ·

(
k∇V S

)
= 0,

∂Ω k∇V S
·n = λS ζ (x)S, V S |∂Ω = S.

(1.11)

S is the Steklov eigenvector, but by language abuse, we will denote Steklov modes the functions
V S ∈ H1(Ω), which are the harmonic lifting of S in Ω. With the following bilinear operator

∀u, v ∈ H1(Ω), C∂Ω(u, v) =

∫
∂Ω
ζ(x)u|∂Ωv|∂Ω, (1.12)

the weak variational form of Eq. (1.11) reads:

De�nition 1.3.4 Find (λS , V S) ∈ R+ ×H1(Ω) such as ∀v ∈ H1(Ω)

KΩ(V S , v) = λS C∂ Ω(V S , v). (1.13)

The following orthogonality properties are veri�ed

∀i, j ∈ N, KΩ(V S
i , V

S
j ) = δij

λSi
h0 + λSi

,

C∂Ω(V S
i , V

S
j ) =

δij

h0 + λSi
.

(1.14)

with h0 > 0 a weighted factor with the dimension of a heat transfer coe�cient. Note that
Eqs. (1.10) and (1.14) are not standard orthogonality properties as they result from the norm
adopted to combine both Dirichlet and Steklov bases. This norm will be explicated in the
next section.
The set of Steklov eigenvectors {Si}i∈N forms an in�nite but countable base of the Hilbert
space H1/2(∂Ω).
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1.3.3 The Dirichlet-Steklov basis

Orthogonality properties play a fundamental role in modal methods. They ensure that the

decomposition T =
∑ND

i=1 xiV
D
i +

∑NS

i=1 xiV
S
i is unique. The following scalar product is

de�ned:

De�nition 1.3.5 Let u, v ∈ H1(Ω). The scalar product (u|v)H(Ω) is de�ned

(u|v)H(Ω) =

∫
Ω
k∇u ·∇v + h0

∫
∂Ω
ζ(x)uv

= KΩ(u, v) + h0 C∂Ω(u, v),
(1.15)

This scalar product yields a norm:

∀u ∈ H1(Ω), ‖u‖H(Ω) =
√

(u|u)H(Ω). (1.16)

This norm is equivalent to the usual norm in H1(Ω):

∀u ∈ H1(Ω), ‖u‖H1(Ω) =
√
‖|∇u|‖2

L2(Ω)
+ ‖u‖2

L2(Ω)
(1.17)

Dirichlet and Steklov bases can thus be normalized with ‖ · ‖H(Ω)
1. This new scalar product

on H1(Ω) enables to establish orthogonality relations between Steklov modes and Dirichlet
modes:

∀i, j ∈ N, (V D
i |V S

j )H(Ω) = 0,

KΩ(V D
i , V

S
j ) = 0.

(1.18)

Equation (1.18) allows the simultaneous use of Dirichlet and Steklov bases to decompose a
thermal �eld. Thus, the term Dirichlet-Steklov base is legitimate. On a more mathematical
point of view, the union of the bases of Dirichlet and Steklov {V D

i }i∈N ⊕ {V S
j }j∈N forms a

Hilbertian base of H1
0 (Ω)

⊕
E(Ω) = H1(Ω), where E(Ω) ⊂ H1(Ω) is the space of harmonic

lifting. In particular:

∃xDi , xSj such that ∀u ∈ H1(Ω), u =
∑

X∈{D,S}

∞∑
i=1

xXi V
X
i , (1.19)

with xXi = (u|V Xi )H(Ω).

1.3.4 Amplitude equations

The amplitude equations are obtained by replacing temperature by their decomposition on
the Dirichlet-Steklov modes in equations (1.7). Dirichlet-Steklov modes are substituted for
tests functions v:

1 ≤ i ≤ ND,
∑

X∈{D,S}

NX∑
j=1

xXj KΩ

(
V D
i , V

X
i

)
+

∑
X∈{D,S}

NX∑
j=1

ẋXj CΩ

(
V D
i , V

X
j

)
= L

(
V D
i

)
(1.20a)

1Hence orthogonality properties (1.10) and (1.14).
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1 ≤ i ≤ NS ,
∑

X∈{D,S}

NX∑
j=1

xXj KΩ

(
V S
i , V

X
i

)
+

∑
X∈{D,S}

NX∑
j=1

ẋXj CΩ

(
V S
i , V

X
j

)
+

NS∑
j=1

xSj H (Si, Sj) = L
(
V S
i

)
(1.20b)

1.4 Numerical implementation

1.4.1 Computation of the Dirichlet base

The correct consideration of Dirichlet boundary conditions is a bit tricky. Discretization of
Eq. (1.9) yields the following eigenvalue problem:

KV D
i = λiCV

D
i . (1.21)

K and C are matrices that corresponds respectively to operators KΩ(u, v) and CΩ(u, v). They
are of dimension [N ×N ] where N is the number of nodes of the discretized geometry. They
can be obtained by classical numerical methods (�nite elements, etc.) However, in the varia-
tional formulation, it is speci�ed that solution is searched in H1

0 (Ω). What does that mean
concretely? That means that every line and column corresponding to a point which belongs
to a boundary is null. The eigenvalue problem is replaced by a smaller one:

KDV D
i = λiC

DV D
i , (1.22)

where matrix KD and CD are obtained by removing every line and column corresponding to
a point which belongs to a boundary.

1.4.2 Computation of the Steklov base

Discretization of Eq. (1.11) yields the following eigenvalue problem:

KV S
i = λiCζV

S
i . (1.23)

Non-zero elements of matrix Cζ are only on the points which belong to a boundary. Equation
(1.23) results in a saddle-node problem.

1.4.3 State equation

The discretization of the weak variational formulation of (1.7) yields the following matrix
formulation:

CṪ = − (K + H)T + U. (1.24)

The state equation is directly built from Eq. (1.24). First, T is replaced by its modal
formulation VX. Matrix V of dimension [N × (ND +NS)] gathers ND Dirichlet and NS

Steklov eigenvectors V D
i and V S

i . Next step is to project the resulting equation to the reduced
base. Concretely, this operation is made by multiplying Eq. (1.24) by TV. It results in:

TVDCVDẊD + TVDCVSẊS = − TVD (K + H) VDXD

− TVD (K + H) VSXS + TVDU (1.25a)
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TVSCVSẊS + TVSCVDẊD = − TVS (K + H) VSXS

− TVS (K + H) VDXD + TVSU (1.25b)

If the conductivity and the heat capacity used in the eigenvalue problems and in the heat
equation are the same, then these equations might be simpli�ed thanks to orthogonality
properties.

ΛDẊD + TVDCVSẊS = −XD + TVDU (1.26)

TVSCVSẊS + TVSCVDẊD = − TVS (K + H) VSXS + TVSU (1.27)

At the steady-state, Dirichlet states are obtained without any resolution. Furthermore, if
the volume solicitation (i.e. Π) is null, then at the steady-state, Dirichlet states are also
null. Finally, Dirichlet state-equation is diagonal. This property can be used during temporal
discretization: the numerical resolution is then reported only on the Steklov modes.
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1.5 Example of application

Figure 1.2: A slice of the considered concrete beam

We consider a concrete beam, su�ciently long to be modeled in 2D (see Fig. 1.2). Initially
at a temperature T0 = 0◦C, the beam is subjected to:

� a global exchange with the outside (Text = 0◦C, hext = 10W.m−2.K−1);

� a time-dependent solar radiation, estimated by a simple sinus law;

Physical properties of concrete are given in Table 1.1:

k
(
W.m−2.K−1

)
ρ
(
kg.m−3

)
cp
(
J.kg−1.K−1

)
αs

1.4 2250 800 0.9

Table 1.1: Physical properties of concrete

1.5.1 Finite elements model

Finite element matrices are given in the working directory, and a broad outline of a �nite
element code is given FE_model.m.. With a backward �rst order Euler scheme, Eq. (1.24)
splits in:

[C + dt (K + H)]T (t+ dt) = CT (t) + dtU. (1.28)

This equation is integrated over a time τ = 72h, with a time-step dt = 1s. Thermal �eld
is recorded every 3600 s. The resulting temperature �eld is recorded in T_EF. To visualize a
temperature �eld, just type Visu(T_EF,i) with i the hour you want to see.

1.5.2 Reduced order model

Eigenmodes computation

As said above, matrices involved in eigenvalue problem (1.22) are amputated from lines and
columns corresponding to boundary nodes. They are given in the working directory under
the names K_dir and C_dir. The command line to compute modes is:

[Vec_dir,Val_dir]=eigs(K_dir,C_dir,N,'la');
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with N the number of desired eigenmodes. Computation of the 937 eigenmodes is quasi
immediate. Another step is necessary: these eigenmodes are de�ned on the 937 interior
points. They have to be resized to insert zero at the boundary points. You can �nd those
complete eigenmodes in the working directory under the names Vectors_Diric. The Steklov
eigenmodes are also given in Vectors_Stekl.

Modes visualization

To visualize modes, just type Visu(Vectors_diric,i) or Visu(Vectors_Stekl,i) with i the
number of the mode you want to see.

1.5.3 Orthogonality relations

Please open script Reduced_model.m. It contains an outline of the code.

Check that the following orthogonality relations are veri�ed:

TV Xi KV Yj = aiδijδXY ,
TV D

i CV D
j = biδij ,

TV Xi CζV
Y
j = ciδijδXY

where ai, bj and cj are real values that depend on the chosen norm.

Write a loop to normalize the modes such that TV Xi [K + Cζ ]V
Y
j = aiδijδXY

1.5.4 Modal model construction

Construction of the modal model is very easy once the modes have been computed and
normalized. The simplest way is to �rst gather Dirichlet and Steklov eigenvectors into one
matrix noted V =

{
VD|VS

}
of dimension [N × (Nd +Ns)]. Reduced matrices are easily

computed thanks to:

L = TVCV, M = TV (K + H) V, N = TVU (1.29)

With a backward �rst order Euler scheme, Eq. (1.24) splits in:

[L + dtM]X(t+ dt) = LX(t) + dtN (1.30)

Compute the reduced matrices and write the program to solve the reduced model. An outline
is given in the program Reduced_model.m. To recover the temperature just write T_red=V*X
Note: Finite elements matrix are sparse and of large size. Their inverse, is still of large size,
but is not sparse anymore. The preliminary computation of [C + dt (K + H)]−1 might not be
a good idea. On the opposite, reduced matrix are of small size and full, just as their inverse.
If dt is �xed, then the preparatory computation of [M + dtL]−1 speeds up the temporal
resolution.

Selection matrix

In several applications, the knowledge of the whole temperature �eld is not necessary. The
information is only needed in few points, names observables and noted Y . Y is retrieved from
the temperature �eld T by the simple relation:

Y = ET

E is basically a boolean matrix with ones at the selected points and zeros elsewhere. The
modal formulation yields:

Y = EVX
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We want to see the temperature evolution at location x = 0.55m and y = 0.95m. Use
function location(x,y) to �nd the point corresponding to this location. Build the reduced
selection matrix EV.

Reduced model performance

Several criteria are used to evaluate the performance of the reduced model. The �rst one is
the time needed to solve the temporal loop. The other ones concern the error between reduced
and �nite elements model. Several error are de�ned:

<ε> =
1

V

1

τ

∫ τ

0

∫
Ω
|TFE − Tmod| dtdΩ ; ε∞ = max

τ
max

Ω
|TFE − Tmod| (1.31)

The error on the observables are also considered.

<ε>i =
1

τ

∫ τ

0
|Y FE
i − Y mod

i | dt ; ε∞,i = max
τ
|Y FE
i − Y mod

i | (1.32)

Two reductions have to be handled: one on the Steklov modes, and one on the Dirichlet
modes.
The number of Dirichlet modes is set to 10, and the number of Steklov modes is increased
from 10 to 70, by step of ten. Compute the errors de�ned above. How do they behave ? Is it
useful to retain more Steklov modes ?
Now, the number of Steklov modes is set to 40, and the number of Dirichlet modes is increased
from 5 to 40, by step of �ve. Compute the errors de�ned above.

New boundary conditions

We consider the same beam, but now the wind has risen, and the heat exchange is now
modeled by h = 100W.m−2.K−1. The �nite elements solution is given in the working directory
T_EF_h_100.mat. Try a reduced model with 20 Dirichlet modes and 40 Steklov modes, and
compute the errors. Compare to the case with h = 10W.m−2.K−1.

1.5.5 To go further...

Matrix shape

Visualize matrices L and M. Are they really dense matrices ?

Energetic criteria

The criteria used here is the temporal criteria, also called Marshall truncature. It has the
advantage if being immediate, but might not be very e�cient. Another criteria might be
used, based on the temporal response. Assume a known �nite element solution TEF . With
the orthogonality properties, the projection of that solution on the Dirichlet-Steklov base
writes:

X = TV(K + Cζ)TEF

The modal dominance Ei is de�ned by:

Ei =

∫
x2
i dt

the program dominance.m computes Ei. For a reduced model of order 50, how many Dirichlet
modes and Steklov modes would you take following this new criteria ? Compare to the above
study.
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Chapter 2

Utilization of reduced order model for

inverse problem

2.1 Inverse approach

From the knowledge of the temperature �eld, the aim here is to identify the evolution of the
heat �ux ϕu (t) (�gure 2.1) received by the concrete beam. In practice, inverse approach fo-
cuses on a part of the temperature �eld, i.e. an observable vector Y that gives the temperature
evolution on Nmes particular points of interest for the user.
From the measurements Y , the real heat �ux ϕu(t) is estimated by ϕ̂u(t). From this estimated
�ux, direct model (detailed or reduced) gives an estimate of the observable, noted Ŷ , through
a selection matrix E such as:

Ŷ = ET̂ = EV X (2.1)

To quantify the quality of estimations we introduce two quantities σT and σϕu . σT represents
the mean quadratic error on temperatures between the observable (measurements) Y and the
output Ŷ of numerical model, while σϕu represents the mean quadratic error on �uxes. These
quantities are computed according to the following equations:

σT =

√√√√∑Nmes
j=1

∑Nt
i=1

(
Yj (ti)− Ŷj (ti)

)2

Nt ×Nmes
(2.2)

σϕu =

√∑Nt
i=1 (ϕu (ti)− ϕ̂u (ti))

2

Nt
(2.3)

For this kind of inverse problem, two methods are often used. The �rst one, known as Beck
method, is sequential, and has been the object of many works. The second one, is global, and
is based on the minimization of a cost function.
Before implementing this parameter estimation problem, a sensitivity study has been made.
The sensitivity is de�ned by:

S =
∂T

∂ϕu
(2.4)

12
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Figure 2.1: Evolution of the heat �ux ϕu (t).

2.1.1 Beck method

Only a brief description of Beck method is given here. For further information, the reader is
encouraged to read [1, 2] for example.
Beck method is a sequential process in which the amplitude of the heat �ux at each time step
ϕ̂k+1
u is identi�ed from the temperature at time step k + 1. It consists in minimizing a tem-

perature di�erence between the measurement and the recalculated temperature. Generally,
future time steps are used to regularize the unstable character of inverse problem as well as
the lagging and damping e�ects due to the di�usion process [3, 4, 5]. In that case, unknown
heat �ux ϕ̂k+1

u is estimated from temperature measurements at time step k + 1 and at nf
future time steps k + 2, k + 3, . . . , k + 1 + nf under assumption:

ϕ̂k+1
u = ϕ̂k+1+f

u = constant f ∈ [1, nf ] (2.5)

From reduced state representation (2.6):{
LẊ = MX + ϕu (t)N

Ŷ = EV X
(2.6)

a temporal discretization with a constant time step is used to obtain the excitation state at
each iteration k:

Xk+1 = [L−∆tM (t)]−1
[
LXk + ∆tϕk+1

u N
]

(2.7)

The estimated solution is given by a least squares minimization:

ϕ̂k+1
u =

[
ΘtΘ

]−1
ΘtZk+1 (2.8)

where Θ and Z are de�ned by:
If nf = 0

Θ = EV [L−∆tM (t)]−1 [∆tN ] (2.9a)

Zk+1 = Y k+1 −EV [L−∆tM (t)]−1
[
LXk

]
(2.9b)
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or if nf > 0 by:

Θ =



EV [L−∆tM (t)]−1 ∆tN

EV
[
(L−∆tM (t))−1 + (L−∆tM (t))−2

]
∆tN

...

...

EV
[∑nf+1

i=1 (L−∆tM (t))−i
]

∆tN


(2.10)

and

Zk+1 =



Y k+1 −EV [L−∆tM (t)]−1LXk

Y k+2 −EV [L−∆tM (t)]−2LXk

...

...

Y k+1+nf −EV [L−∆tM (t)]−(nf+1)LXk


(2.11)

The results of this technique and the di�culties related to regularization through the future
time steps method are presented in section (2.2.1).

2.1.2 Global method

As represented in �gure 2.2, the global method requests the entirety of the data on the
temporal domain. It aims at minimizing a cost function built on the di�erence between the
measured temperatures Y and those resulting from calculation with direct model Ŷ . The
cost function can also be penalized by a regularization term:

J (ϕu (t)) =
1

2

[∫ τ

0

∥∥∥Y (t)− Ŷ (t)
∥∥∥2

dt+ ε ‖ϕu (t)‖2
]

(2.12)

The penalisation term is pondered by a positive coe�cient ε named Thikonov parameter.
The identi�cation problem consists in �nding the optimal solicitation ϕ̄u such as J is mini-
mum:

Figure 2.2: General scheme of parameters estimation
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ϕ̄u = arg [minJ (ϕu)] (2.13)

This problem can be solved with a method of descent, which requires the estimation of the
gradient of the cost function J (ϕu (t)) with respect to the solicitations ϕu (t). This is per-
formed by the adjoint method [6, 7]. This method allows to implement low-cost algorithms
compared to a �nite di�erence method, since only the adjoint problem has to be resolved be-
sides the direct problem. As this iterative procedure may require many runs of direct model,
reduced models are perfectly �tted for this method.

The Lagrangian formulation is used to establish the equations of the reduced adjoint problem.
From the problem of optimization, described by equation (2.13), we consider the Lagrangian
formulation de�ned by:

L (ϕu,X,λ) = J (ϕu) +

∫ τ

0
λ · (L (ϕu,X)) dt (2.14)

where L (ϕu,X) is the constraint equation of the state variable X de�ned by:

L (ϕu,X) = −LdX
dt

+MX +Nϕu (2.15)

The constraint equation L (ϕu,X) is by de�nition always zero (see Eq. (2.6)), which leads to
an equality between the Lagrangian L and the criterion J .
At the point where the criterion is minimal, Lagrangian derivatives with respect to these three
variables are zero:

∂L
∂λ

= 0 (2.16a)

∂L
∂ϕu

= 0 (2.16b)

∂L
∂X

= 0 (2.16c)

The derivative de�ned by equation (2.16a) retrieves the state equation (2.6).
Both last derivative (Eq. (2.16b) and Eq. (2.16c)) bring two new relations, called equation
of the gradient (Eq. (2.17a)) and adjoint equation (Eq. (2.17b)):

∇J = εϕu +N tλ (2.17a)

−Lλ̇ = M∗λ+ V tEt
(
Y (t)− Ŷ (t)

)
(2.17b)

where M∗ is the adjoint matrix of M .

Iterative computing of the solicitation ϕu which is based on the computation of �rst derivatives
∇J is called gradient method. In these iterative methods, the new estimate of ϕ̂ku is computed
from an initial guess ϕ̂0

u by:

ϕ̂k+1
u = ϕ̂ku + ρkwk (2.18)

where ρk is a positive scalar that represents the search step size, and wk is the direction of
descent at each iteration k.
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Compared to the steepest descent method, the Conjugate Gradient Method (CGM) [6, 4, 8, 9]
improves the convergence rate by choosing the descent directions that reach minimum of the
cost function faster. In this iterative technique, descent directions are obtained as a linear
combination of the negative gradient direction at the current iteration with the direction of
descent of the previous iteration:

wk = −∇Jk, k = 0 (2.19a)

wk = −∇Jk + γkwk−1, k > 0 (2.19b)

and where γk is the conjugation parameter. Various formula expression of γk can be found
in the literature [6, 8, 9]. One can cite the Flecher-Reeves formula [4, 10, 11], given by:

γk =

∥∥∇Jk
∥∥2

‖∇Jk−1‖2
(2.20)

The line search in the direction wk of the step ρk can be performed by secant method [12]:

ρk = −α
〈
∇J

(
ϕ̂ku
)
, wk

〉
〈∇J (ϕ̂ku + αwk) , wk〉 − 〈∇J (ϕ̂ku) , wk〉

(2.21)

To illustrate this iterative procedure we give the corresponding pseudo-code algorithm.

k=0;
Make initial guess for ϕ̂0

u (t);

repeat

k = k + 1;

Solve for ∀ t ∈ [0 : τ ]: LẊ = M (t)X +N ϕ̂k−1
u (t);

Ŷ (t) = EV X;

Solve for ∀ t ∈ [τ : 0]: −Lλ̇ = M∗λ+ V tEt
(
Y (t)− Ŷ (t)

)
;

∇J = εϕ̂k−1
u (t) +N tλ;

Compute γk (Eq. (2.20)) ;

Compute wk (Eq. 2.19);
begin

Determine ρk (Eq. (2.21)) ;

Solve for ∀ t ∈ [0 : τ ]: LẊe = MXe +N
(
ϕ̂k−1
u + αwk

)
;

Ŷ e (t) = EV Xe;

Solve for ∀ t ∈ [τ : 0]: −Lλ̇e = M∗λe + V tEt
(
Y (t)− Ŷ e (t)

)
;

∇J
(
ϕ̂k−1
u + αwk

)
= ε

(
ϕ̂k−1
u + αwk

)
+N tλe;

return ρk

end

ϕ̂ku = ϕ̂k−1
u + ρkwk;

until Stopping criteria (see below);

Algorithm 1: Iterative procedure for GGM

This iterative calculation ends when one of the following criteria is met:

� The �rst is based on the evolution of functional J :
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J
(
ϕ̂k−50

)
− J

(
ϕ̂k
)

J (ϕ̂k)
≤ 1% (2.22)

� The second is based on Morozov's discrepancy principle [13], stipulating that the mean
quadratic residual σT (Eq. (2.2)) should be close to the standard deviation of the
measurement noise (or added noise in numerical case) σB.

σT ≈ σB (2.23)

2.2 Numerical results of inversion

In this section we present a numerical validation of inverse approach with reduced model
by comparing Beck to global method. This numerical validation consists in recovering the
identi�ed �ux ϕ̂ (t) from data temperature Y at point A located at (x, y) = (0.55, 0.95). The
time evolutions of temperature at point A obtained by the complete model Y CM and the
reduced one Y RM (n = 110) are presented in �gure 2.3.
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Figure 2.3: Validation of Reduced Model of order n = 110.

Both temperature evolutions are in very good agreement.
The reduction errors (Y RM − Y CM ) for di�erent orders reduction n are plotted in �gure 2.4.
For n = 110, the error is less than 0.08 (◦C) except at the sudden change in the �ux density.
For the other models n = 30 and n = 50, the errors remain acceptable except, if we except
again the peak due to the sudden variation of heat �ux. The choice of the order reduction n
will depend on the nature of the �ux density (frequency) and the physical problem.
It is important to note that for inversion:

� The data Y is obtained by adding a normal and independent noise to the temperature
obtained through the complete model Y CM . This noise is characterized by a standard
deviation σB = 0.1 (◦C). Only one point is considered.
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Figure 2.4: Reduction errors for di�erent n.

� Inverse problems (Beck or global method) are solved with the reduced model (Eq. (2.6))
of order n = 110. Classically the order is chosen such that the additional error intro-
duced by the reduction is of the same order than the noise. Obviously, the use of a
reduced model facilitates and accelerates computation of [L−∆tM (t)]−1 at each Nt

time step (size 110× 110 instead of 1139× 1139).

2.2.1 Beck method

On-line identi�cation by coupling Beck's method and reduced models has already been done
in many works [14, 2, 15, 16]. The di�culty with this method is related to the choice of the
nf future time steps.
As evidenced in �gure 2.5, the identi�ed heat �ux presents disturbances for nf = 0. The
high frequency oscillations do no impact on the temperature evolution at point A as shown
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Figure 2.5: Evolution of estimated �ux with σb=0.1 (◦C) and n = 110.
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Figure 2.6: Estimated temperature compared to the exact one.

in �gure 2.6.
Table 2.1 indicates errors observed on di�erent cases. In case of n = 110 and σb=0.1 (

◦C), the
mean quadratic error on temperature σT is of the same order as the added noise σb. When
σb=0 (

◦C), we note that the result is more accurate with the model of reduced order n = 110
compared to the smaller model, with a calculation time less then 0.5 s.
Now comparing the 1st and the last cases, we observe this time that the smallest model is
more accurate. This is due to the fact that the reduced model naturally �lters the high
frequencies of the signal.

case σT [◦C] σϕu [-] CPU time [s]

n = 110 σb=0.1 0.095 5.4 E-2 0.53

n = 110 σb=0 2.19E − 14 5.0 E-3 0.52

n = 50 σb=0 2.85E − 14 2.2 E-2 0.18

n = 30 σb=0 1.82E − 14 2.3 E-3 0.11

n = 30 σb=0.1 0.095 3.5 E-2 0.11

Table 2.1: Inversion results by Beck's method for di�erent cases.
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Figure 2.7: Evolution of estimated heat �ux with n = 110 and n = 30.

2.2.2 Global method

The result can be obtained either:

� By implementing algorithm 1.

� Or by using the Matlab optimization toolbox with function lsqcurve�t. This function
starts from initial guess ϕk=0

u (t) and �nds coe�cients ϕ̂u(t) that �t the best the nonlinear
function myfun(ϕ̂,time) to the data Y (in the least-squares sense). myfun(ϕ̂u,time) is
the reduced order model function that takes as input a vector ϕ̂u and returns a vector
Y RM .

The obtained estimated heat �ux is plotted in �gure 2.8, where the exact �ux is also rep-
resented for a comparison. The results presented here are obtained by keeping the default
values of the Matlab function.
Table 2.2 presents the mean quadratic errors on estimated �ux σϕu and on temperature σT ,
as well as magnitude of computing time, for di�erent cases.
The results clearly prove the e�ciency of a reduced model in a global identi�cation procedure
: thanks to the reduced model, the identi�cation is done in 30 seconds with a standard laptop.

0 1 2 3 4 5 6 7

Time (s) 10
5

0

0.5

1

1.5

2

2.5

Figure 2.8: Estimated heat �ux obtained with a global method.
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case σT [ ◦C] σϕu [-] CPU time [s]

n = 110 σb=0.1 0.03 4.9 E-2 28

n = 110 σb=0 3.5E − 7 5.0 E-3 28

n = 30 σb=0.1 0.05 3.3 E-2 9

Table 2.2: Inversion results with a global method for di�erent cases.

2.3 Conclusion

This study demonstrated the interest of using a reduced model to identify thermal sources.
The obtained reduced model has proven its e�ectiveness by reducing the number of degrees of
freedom of the problem. For the case under study, a reduced model de�ned by 110 modes runs
almost 100 times faster than the classical method of �nite elements. Two standard methods
were then compared to solve the inverse problem. The Beck method has the advantage
of being sequential. Nevertheless, in some other con�gurations, this method requires the
implementation of a delicate regularization in a systematic way. Indeed, the optimum number
of future time steps varies according to the respective importance of di�usion and advection
phenomena.
The global method is considered robust since it requires the entire time evolution of the
observable. It is thus an a posteriori method which is not adapted for a real-time identi�cation.
Moreover, it also requires a regularization parameter (the Tikhonov parameter) that has to
be determined empirically. In the studied case, this parameter was not necessary, as the
reduction naturally �lters the high frequency, and acts as a regularization parameter. In
addition, the reduced modal model decreases satisfactorily the computational times : it paves
the way to implement an almost on-line identi�cation strategy by a variable-sized sliding
window approach. This technique was used in [17] to estimate heat �ux on a braking system.
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Abstract.  
 
The objective of this tutorial, composed of two 1h30 sessions, is to construct a virtual sensor, 
that is a combination of physical sensors, associated with a mathematical model that allows 
the estimation, by an inverse technique, of quantities (local temperatures or rate of heat lowss) 
associated to locations where no sensor is present. This applies here to linear time invariant 
heat transfer, where temperature variation at any point in the system (output)  is a convolution 
product between the intensity of a transient excitation (input) and a corresponding impulse 
response.The first session of the tutorial is devoted first to the solution of a direct 1D problem 
in a simulated case where the Laplace transforms of the 3 functions are analytically known, 
with a corresponding inversion to retrieve a surface temperature or a surface rate of heat flow. 
The second part of this session is devoted to experiments on a hollow cast-iron cylinder, with 
2 thermocouples embedded in the thickness of its wall, with stimulation by a foil electric 
resistance over a part of its inner (front) face. Either the transient temperature or the rate of 
heat flow on this face is looked for. So, it requires first the the identification of the impulse 
response of each thermocouple (a transmittance or an impedance), which corresponds to a 
deconvolution problem in a calibration/validation experiment, followed by a new experiment for 
estimating front face temperature and rate of flow by a regularized deconvolution. In a second 
session  of the tutorial, the identification step of the second part is replaced by the estimation 
of the parameters of a model of  ARX structure (AutoRegressive model with eXogenous 
inputs), for  retrieving the above impulse responses in a more parsimonious way. 
 
 
Keywords: inverse heat conduction problem - virtual temperature sensor - deconvolution - 

thermal impedance - thermal transmittance – ARX parametric model 
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1. Introduction 
 
Classical heat flux sensors do not provide really non-intrusive measurements of the transient 
heat flux at a solid/solid or solid/fluid interface because their presence generates a 3D heat 
transfer, if their area is small, or add an extra resistance and heat capacity, if their area is large. 
In some applications, use of temperature sensors at similar interfaces may also be difficult, 
because of a harsh outside environment (possible sensor destruction) or by presence of 
radiation (possible different absorptivities between surface sensor and the surrounding 
surface, with a resulting temperature measurement bias). 
 
Here the alternative consists in considering an inverse input problem: one or two temperatures 
are measured at different depths with respect to the excitated front face of a wall in a transient 
configuration in a slab of finite thickness.  
 
These temperatures can be expressed in terms of the unknowns of the inverse problem, which 
allows the estimation of either the wall heat flux for an Inverse Heat Conduction Problem, or 
the temperature at location where no temperature sensor is present once a Virtual Temperature 
Sensor has been designed.  
 
The corresponding direct problems, in a 1D heat transfer configuration, are presented in 
section 2.  They use models based on convolution products with corresponding impulse 
responses (transmittances and impedances). These transforms, the transfer functions,  have 
explicit analytical expressions in 1D in the Laplace domain (see, the Thermal Quadrupole 
method [1]), that are detailed in Appendix A. The values of their the impulse responses can be 
found by numerical inversion of their Laplace transforms (the « operational » transfer 
functions), see details in Appendix B.  
 
Section 3 is devoted to the general subject of parameterizing a convolution product, either with 
a scalar expression or in a vector/matrix form, in order to give it a finite dimensional structure 
in linear algebra. Both expressions make the notion of doses of input and impulse response 
appear. 
 
The 1D inverse input problem, using 1 temperature output, is presented in section 4, with 
details on 3 regularization techniques (Tikhonov, TSVD and Future Time Steps) given in 
Appendices C, D and E. 
 
Section 5 is devoted to the corresponding 1D inverse input problem, using now 2 temperature 
outputs. Its main advantage is to retrieve estimations of front face temperature and rate of heat 
flows independent of the boundary conditions. Derivation of the models used is detailed in 
Appendix F. 
 
If heat transfer is not 1D but still linear, with coefficients of the heat equation and of its 
associated conditions that do no not depend of time, the temperature and heat flux solution 
has still a convolutive nature if the thermal stimulation is separable. This is the subject of 
section 6, where the impulse responses are estimated in an identification experiment for further 
use in an inverse input problem after an experimental verification. Both steps require a 
regularized deconvolution, whose performance can be assessed before making the 
measurements, by the indicators, derived from the Singular Values Decomposition technique, 
that are presented in Appendix G.  
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Another type of experimental identification, using a AutoRegressive model with eXogeneous 
structure (ARX) is presented in section 7. Its main advantage, with respect to a convolutive 
model is the weak numbers of parameters that can reproduce the experimental output, which 
is not the case for impulse responses, even if a link exists between them. 
 
Seven appendices complete the text of this tutorial. They are followed by a list of references. 
 
 
2. Direct problem in 1D using analytical transfer functions in Laplace domain 

 
We consider here the case of a linear 1D heat transfer in a slab of thickness e  heated by a 

surface   source )(tP  (W) over one of its faces of area S . The analytical solution of this 

problem, that is the temperature field  )( t,x  (K) and the rate of heat flow  )( t,x  (W) field 

can be found in Laplace domain by the Quadrupole method, see Appendix 1, as soon as the 

two boundary conditions at =0inx  and  =inx e  are given. Convective and (linearized) radiative 

heat losses are also assumed on both front and rear faces, towards the surrounding fluid at 

temperature  , through two heat exchange coefficients, 0h  and eh , see figure 1.  

 

We assume here that  is equal to zero, in order to have one single source )(tP only, in the 

direct problem to be solved. The surface density of the source /S)()( tPtq =  (W/m2) is 

absorbed by the front face ( =0inx ). 

 
 

 
 

Figure 1 – Heated slab on its front face, with linear heat losses on both faces 
 
 

It is shown in Appendix 1 that the temperature ( ) / rate of heat flow ( ) vectors, in the Laplace 

domain (noted here with an upper bar on temperatures and on the front face source) are given 
by the following matrix equation: 
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where the four coefficients eeee DC,B,A and depend on the Laplace variable, on the area S  

and on the thickness e  of the slab, and on the conductivity   and on the volumetric heat c  

of its constitutive material).  
 
Equations (1), and (A8a,b) in Appendix A,  yield the solution of the direct problem, that is finding 
the temperatures and conductive rates of heat flow on both faces of the slab, that are 
proportional, in the transformed domain, to the transform of the given stimulation ( )P t : 

 

with / ; with ( ) /T T e e e Tz P z A C w P w C k D C  = = = = +0 0 0 0 0 0    (2a,b) 

 

with 1/ ; with /e e e T e e e e Tz P z C w P w k C  = = = =  (2c,d) 

 

A specific  notation is usedhere.   L . to designate the Laplace transform in time of a function 

depending on both space (x) and time (t) : 
 

 
0

( ) ( , ) ( ) exp (- ) d for or
t

x, p L x t x, t p t t       =   (2e) 

 
So, in the Laplace domain, temperature responses as well as rate of heat flow responses are 
proportional to the surface power excitation P , that is the cause  of the corresponding 
transient heat transfer. Mathematically speaking, )(tP  is the unique (power) source which 

differs from the front face rate of heat flows ( )t0  (proportional to the material conductivity 

and area and to the local temperature gradient), because of convective and/or radiative losses 

that are linearized here. So, if  )(tP is an incoming radiative rate of heat flow, ( )t0  is the 

corresponding absorbed conductive flow. 
 
Its consequence, the temperature rise on the front face, can be considered as a “pseudo 
source” and the corresponding temperature/heat flux responses are easily deduced from 
equations (2): 
 

with 1/e e e Tw w A = =0 0 0      (3a) 

 

with ( ) / ( )e e e e e ey y C k D A k B = = + +0 00 0 00   (3b) 

 

with /e e e e Ty y k A = =0 0 0     (3c) 

 
 

Equations (2a to d) and (3a to c) have the same generic form: 
 

( ) ( ) ( )y p h p u p=      (4a) 
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where ( )h p  is called a transfer function, the input u  being either the real heat source P, or the 

pseudo sources 0  or 0 , while the output y is either the temperature   or the rate of heat 

flow   on one face of the slab or inside of it.  
 
In order to retrieve the solution of the inverse Laplace transform )(ty of )(py , two methods 

are available: 
 

i) The  first one consists in calculating the exact Laplace transform of the input )(pu  of )(tu , 

which is possible if an analytical expression of )(tu  is available, and to multiply it by ( )h p . 

Once the analytical expression of )(py  is available, return to its inverse transform can be 

implemented by various techniques, either analytical or numerical, detailed in Appendix B. 
 

ii) The second method consists in inverting the transfer function ( )h p  first, using one of the 

techniques described in Appendix B, in order to get its corresponding inverse Laplace 

transform ( )h t , which is called the impulse response. It can also be considered as a Green's 

function, for the special case of linear time invariant systems (see section 6 further on). This 
impulse response can be (see Appendix A for the complete expressions of the corresponding 
transfer functions) : 

 

- an impedance (in K.W-1.s-1) 0 ( ), ( ) or ( )e xz t z t z t  (input, the real power source )(tP , 

in watts and output, a local temperature in kelvins), or an other impedance 
' ( )z t0 , 

' ( )ez t  or ' ( )xz t  where a pseudo-source, the front face rate of heat flow 0  replaces 

P , 
 

- a power transmittance (in s-1)  0 ( ), ( ) or ( )e xw t w t w t    (input, the real power source 

)(tP , and an output, a local rate of heat flow, both in watts), 

 

- a temperature transmittance (in s-1)  0 0( ) or ( )e xw t w t  (input, a pseudo-source, the 

front face temperature )(0 t , and output, a local temperature, both in kelvins), 

  

- an admittance (in W.K-1.s-1) 00 0 0( ), ( ) or ( )e xy t y t y t  (input, a pseudo-source, the 

front face temperature )(0 t , in kelvins,  and output a local rate of heat flow, in watts). 

 
The second step in this second method consists in using the return from the Laplace domain 
of equation (7a) into the original time domain that makes a convolution product appear: 
 

( )
0 0

( ) ( ) = ( ) ( ) d = ( ) ( ) d
t t

y t h * u t h t t ' u t ' t ' u t t ' h t ' t '= − −   (4b) 

 
Remark 1: Equation (4b) shows that the convolution product is commutative, which means 

that the two functions ( )h t  and ( )u t  can be exchanged in the definition and the 

practical calculation of the output ( )y t . 
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Remark 2 (important): The various analytical close form expressions of the transfer functions 

(operational impedances, transmittances and admittances), in the Laplace domain, 
are given above  for an homogeneous slab in transient 1D transfer, with linear heat 
losses over both of its faces, see equations  (2a) to (6c). However, analogous 
transfer functions exist in transient 3D linear heat transfer in material systems, if 
some conditions are met, see [11], even if their corresponding expressions are not 
available. In these more involved configurations, the inverse Laplace transforms of 
the transfer function, that is the impulse response, can be found by model reduction, 
if a detailed numerical solution for the output is available, or by model identification, 
if experimental measurements of both both input and output have been made, see 
section 3.2 below. 

Three conditions are necessary for an impulse response to exist, in a Single Input/Single 
Output (SISO) case in a transient 0D, 1D, 2D or 3D heat transfer case: i) Initial steady state 
temperature field, ii) Space/time separation in the writing of the thermal source for a detailed 
model of transient diffusion with boundary conditions and iii) This model  has to be Linear with 
Time Independent coefficients (LTI). Forced convection in a porous medium, or in a heat 
exchanger, with a 3D velocity field that does not vary in time, can meet these conditions [14]. 

 
 

3. Direct problem in any dimensions 
 
 
3.1  Scalar form of a discrete convolution product in heat transfer 
 
By definition, the 3 functions y, h and u involved in convolution product (4b) are equal to zero 
at time t = 0 and the source u departs from zero at time t = 0+ , that is at a time immediately 
past zero. This departure from a zero level for u is the definition of the origin of the time scale. 
This stems from the fact that the output of this model is a forced one and that no relaxation of 
a past non-zero output levels is considered here. So, one writes here : 
 

  

(0) (0) = (0) = 0 and (0 ) (0 ) = (0 ) = 0

dx
with ( ) = for or

d

u y h u y h

x t x u , h y
t

− − −= =

=
  (5) 

 
Equation (5), means that at time 0 the 3 functions, as well as their derivatives, are equal to 
zero, even if a sudden change, for example to a finite or infinite level can happen at a positive 

time 0t += . In that case  

 
In practice, the output is calculated, or measured, on a discrete time grid using  a discretizetion 

or acquisition time step t and model (4b) is written at a time kt k t=   for 1k  and a numerical 

quadrature has to be made:   
 

11

1
1

Δ with and d for or
Δ

j

j

k j j j

k t

k
t

j

j k jt x x x x (t ) t x h u
t

y y (t ) h u
−=

− += = = = 
  (6) 
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In this notation jx  is the  dose of function ( )x t  on interval 1j jt , t− 
  , while jx  is its  average 

value on the same interval. Let us note that the zero value of j  corresponds to initial time, 

where 
0 0 0 0 0t u h y= = = = .  Of course  approximation (6) is valid if Δt is small enough to 

make the approximation converge. 
 
Remark 3: The numerical quadrature above of the continuous integral consists in replacing 

the 2 original functions ( )u t  and ( )h t  by their averaged values, ju  and jh , that 

solely depends on their doses jh  and ju  over a given time  interval of duration 

Δt . The calculation of doses can be made through the use of either the cumulative 

input, or of the step response. This last one  is the response to a Heaviside input 
of unit level and is also the primitive of the step function. A new notation is 
introduced here, where a capital letter ( )X t designates the primitive of a function 

( )x t  that meets conditions (5) : 

 

0

1
( ) ( ) d ( ) ( ) for or

t

X t x t ' t ' X p x p x h u
p

=  = =  (7a,b) 

 
An exact expression of this integral, in terms of doses, is available on the time grid: 
 

1

( ) for or

k

k j

j

X t x x h u

=

= =    (7c) 

 
So, the dose of the input or of the impulse response is simply the variation of the cumulative 
input or of the step response between the two bounds of the corresponding time interval : 
 

1where ( ) and for orj j j j j j jx X X X t X X X x u h−  =  = − =  (7d) 

 
So, equation (6) takes the following form, sometimes called the Duhamel convolution product: 
 

1

1k

k

k

j

j k jy y (t ) H u

=

− +=       (7e) 

 
Remark 4: The exact step response ( )H t can be found by numerical Laplace inversion of 

( ) ( ) /H p h p p=   if the explicit analytical expression of the transfer function ( )h p  is 

available, see (7b).    
 
Remark 5: Because numerical quadrature (6) is just an approximation, valid for small time 

step, its inversion, for known exact or noisy input and output (model 
reduction/identification problem), see section 3.2, is not able to bring any 

information about the point values of ( )h t  within the 1j jt , t− 
   interval: only doses, 

or averaged values, also defined in (6), of this function can be estimated . Let us 
also note that even if function ( )h t  is not bounded on a given time interval, its dose 
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can be calculated. This is the case for the front face time impedance 
0( ) ( )h t z t=

, whose Laplace impedance is given in (2a). Its short time approximation is 

0 ( ) 1/ ( )z t b t , where b is the thermal effusivity of the material, see [1, section 

1.4.1]).  It goes to infinity as time t goes to zero whereas its corresponding step 

response ( ) ( ) 2 / ( )H t Z t t b = 0  is finite, which yields a dose of impulse 

response on the 1j jt , t− 
   interval that this calculated by (7e): 

( ) ( ), ( ) 2 / ( )j j j jh z t b t t
−

=  −0 1 . 

 

Remark 6 : If the input ( )u t is both bounded and continuous, but only known on the two 

bounds of the 1j jt , t− 
   interval, a good approximation of its dose is : 

 ( )1) ( )
2

j j j

t
u u (t u t−


 +     (7f) 

 

Remark 7 : If there is a local discontinuity of the input at time jt , right and left limit values  

around this time are used and this approximation becomes: 
 

( ) ( )1 1 1) ( ) and ) ( )
2 2

j j j j j j

t t
u u (t u t u u(t u t− +

− + +

 
 +  +   (7g) 

 
 
3.2  Vector/matrix form of a discrete convolution product in heat transfer 
 
Equation (7d) can be given the following expression, involving column vectors and matrices: 
 

1 1 1

2 2 2

3 3 3

( )

( )
1 1

( ) ( ) with ; for or( )

( )k k k

y y t x

y y t x

x h uy y t x
t t

y y t x

=   
   

=
   
   = = = = ==

     
   
   =   

y u h h u y xN N   (8a) 

 
 

Here ( ).N  is a square matrix of size xk k ,that is a function of a column vector of size x 1k

: 
 

1 1

2 1 2

3 2 1 3

-1 -2 1

0

( ) where

k k k k

 

  

   

    

   
   
   
    =
   
   
   
   

ψ ψN    (8b) 
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( )ψN  is a lower triangular Toeplitz matrix of order k, whatever the nature of vector ψ . 

 
The set of real-valued lower triangular Toeplitz matrices of a given order, associated with the 
matrix addition and the multiplication by a vector, constitutes a commutative ring [15].  This 
kind of structure is both commutative and associative, which means : 
 
 

( ) ( )1 2 2 1 1 2 3 1 2 3 1 2 3( ) ( ) and ( ) ( ) ( ) ( ) ( )= = =ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψN N N N N N N N  

 (8c) 
 

An alternate expression of the vector of doses of input and impulse response is available, using 

their expressions (7a,b,c,d) in terms of their cumulative doses t= x x : 

 

( )
1

1

2

3

( ) ( ) ( ) for or

1 1

1 1

where ; and1 0

1 0k

x u h

X

X

X

X

− +

+

=  = = =

     
     

−     
     = = =
     
     
         

X g x x g X g X

X g g

N N N
  (8d) 

 
So, the corresponding alternate expression of the convolutive model becomes, using the 
properties of Toeplitz matrices and the relationship between doses and internal averages is: 
 

( ) ( ) ( ) ( )+ += =y g U h g H uN N N N    (8e) 

 
The interest of this model is to use only cumulative vectors U  and H  and to replace doses by 

interval averages u  and h , whose absolute levels can be compared to the corresponding 

levels of the continuous functions ( )u t  and ( )h t , disregarding the magnitude of the time step 

t . 

 
From now on, we restrict the generality of model (8a) to cases where the impulse response 

and input are both bounded and continuous on the  0, mt  time interval, where 
mt m t=   is 

the final time of observation. So approximation (7d) is used and model (8a) becomes: 
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2 2

1 1

2 2

3 3

( ) ( ) where ( ) ( ) ( ) and ( ) ( ) ( )

( )1 2

( )1 2

with ; ; and ( ) with for or( )0

( )0 k k

t t

x x t/

x x t/

t x h ux x t

x x t

= = =  = 

=  
  

=
  
  = = = =  ==
  
  
   =   

y u h h u u f u h f h

f x x f x x x

M M M N N M N N

N

 (8f) 

 
 
So approximation (8e), in case of continuous and bounded functions or possibly (7g), in case 
of local discontinuiti(es), can be used to solve the direct problem where input and output are 
known on a discrete grid only. 
 
Let us note that equation (8f) corresponds to the two models that can be used for 3 different 
inverse problems, numbered 1 to 3  that are detailed below. 
 
If the impulse response h  is unknown, it has to be identified by inversion of matrix ( )uM , for 

the  ( )=y u hM  version of the direct problem. This type of identification problem concerns 

two applications:  
 

1) The data of the inverse problem can stem from the solution (output) y  of a detailed 

model, that is the solution by finite elements or by any numerical solution of the 
heat equation with its associated boundary conditions for a given input u . This 

type of inverse problem is called model reduction, since the detailed model will 
be replaced by a reduced model, here ( )=y h uM  the convolutive model, here 

( )=y h uM ,  for future diverse direct or inverse applications. The interest of this 

reduced model is that its output is simpler and faster to solve, see lectures 7A and 
B in this school. 

 
2) The data of the inverse problems can stem from a calibration experiment, where 

the input u and the output y are measured, possibly with noise present in the two 

experimental signals. This type of inverse problem is called (experimental) model 
identification, where no detailed model is not implemented, with exactly the same 
type of future use. However Model identification problems require generally the 
use of a regularized inversion, because of presence of noise in the data, which is 
not always the case for model reduction. 

 
3) If the impulse response is known, after a model reduction or identification, and an input  u

(also called a “source”) is unknown for a given experiment, where the output y is measured at 

one location of the system (it can also be extended to several point peasurements, see section 
5). So, it is matrix ( )hM that has to be inverted in the form  ( )=y h uM of the direct problem  

(8f). This type of inverse problem is called a source estimation problem, which is called, in 
heat transfer,  an Inverse Heat Conduction Problem (IHCP) if u is a flux or rate of heat flux, 
or a Virtual Temperature Sensor (VTS) if it is a measured temperature variation. 
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4. Different types of inverse deconvolution problems in time in 1D 
 
4.1 Recap 
The most general form of the discrete convolutive model, is given by equation (6), for a scalar 
version, or by equation (8a) for its vector/matrix version. These two versions of the same model  
use a dosal parametrization of both input and impulse response that explain the instantaneous 

response ( )y t at discrete instants of a time grid. The doses of a given function ( )x t  are  just 

the integral of a this function on a given time step .They are valid if the calculated response do 
not vary when the time step decreases.  
 
From now on, we'll be using the vector version, which makes writing more compact. Let us 

also note that in the direct problem, where doses  u  and h  are known, both quantities 

commute in (8d).  
  
4.2 Inverse heat conduction problem and virtual temperature sensor 

 
4.2.1 Position of the inverse problem (IHCT or VTS) 
 
In the preceding configuration depicted in Figure 1, we are interested in estimating the front 

face rate of heat flow 0
0

( ) = - S
x

t
x


 

=




 using the measurement exp ( )t of the rear face 

temperature ( )t  on the  0 f, t time interval at a point P at a depth x  (0 x e  ) where a 

temperature sensor is present. This problem is called the Inverse Heat Condition Problem 
(IHCP), see Beck et al. [9] and is based on model (A13b), see Annex A, written with the 

assumption 0 00 ( ) ( ) and '

x xh t P t z z=  = = . 

 

( )0 0( ) * ( )x xz t z t   =  =    (9a, b) 

 

Instead of looking for the front face heat flux 0 ( )t , that is a Neumann boundary condition, we 

can try to recover the Dirichlet boundary condition, that is the front face temperature 0 ( )t , 

with the same local temperature measurements exp ( )t . This corresponds to the use of a 

Virtual Temperature Sensor (VTS), see [10], and is based on model (A13a), see Annex A: 
 

( )0 0 0 0( ) * ( )x xw t w t   =  =    (10a,b) 

 
In both cases (IHCP or VTS) the discrete inverse problem is an inverse input problem whose 
direct model can be put under the form (8e), that is : 
 
 

0

0 0

( ) ( ) and in the IHCP case
( ) ( ) with

( ) ( ) and in the VTS case

x

x

+

+

+

 = =
= = 

= =

A g Z u
y A u g H u

A g W u θ

N N
N N

N N


(11a,b) 
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Here xZ  is the cumulated impedance while 0xW  is the cumulative transmittance, while of the 

matrices and vectors present in the above equations are now of order k m= . 

 

Let us note that if function ( )u t  is bounded and continuous, the above model can be given the 

following form : 
 

where ( ) ( ) ( ) since ( )+= = =y B u B g f H u f uN N N N       (12a, b) 

  
However this writing is not really useful for the inverse problem, since inversion of (12b) is: 
 

  ( )
1 -1( ) ( ) where 2 1 -1 1 -1 (-1) m T− + +  = = =

 
u f u f u fN N  (12c) 

 

So, because of the oscillatory nature of the coefficients of ( )+fN , it is not possible to retrieve 

the exact instantaneous values of the input, even if its interval averages are exact. 
 
Each of the two inverse problems (11a,b) is a deconvolution problem, whose solution, the input 

( )û t , is very unstable, that is very sensitive to the level of noise in the data, that is in the 

measured values of the exact output ( ) ( , )y t x t= , if the parameters of model (11a,b), that is 

the cumulative impulse response  0( ) ( ) or ( )x xH t Z t W t= is perfectly known. It results from 

the numerical inversion of the analytical transfer function ( )h p , or of its primitive, the Laplace 

transform ( ) ( ) /H p h p p=  of the step response here, see equation (7c). This ill-posed 

character derives from two factors: 
 

i) In real physical or in numerical experiments, the output ( )y t  is not known in a continuous 

way. It is observed, or calculated, for discrete values of the time variable on the  0 f, t

time interval, f mt t=  being the last time of measurement, and the preceding convolution 

product becomes: 
 

0

( ) ( ) ( ) d with for 1 to and
kt

k i k fy t h t t ' u t ' t ' t k t k m t t / m= − =  =  =    (13a) 

 
So, in order to have a finite number of unknowns ( m  at most), the 3 functions present 
in (11a,b) have been replaced by their parameterized form, their interval averages or 
doses, which is described in section 3 above.   

 

 ii) In experiments, the different measured values exp
ky  differ from their exact theoretical 

counterparts, that are corrupted by some measurement (additive) noise i : 

 

( ) +exp
i kky y t =      (13b) 

 
where this noise is a random variable, characterized by a given probability law of zero 
mean (its expectation is equal to zero). 
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4.2.2 Regularization of the IHTC and VTS deconvolution problems 

We now focus on point ii) above. The solution of system (11a,b, or 12a) is not immediate and 

its exact right member y  has to be replaced by its measured noisy version expy , with: 

 

     1 2withexp T
i m   = + =y y ε ε   (14) 

 
where exponent T designates the transpose of a matrix. 
 
So, instead of solving one of the equations (11), we have to solve the same equation where 

expy replaces y , with the following solution: 

 
 

1 exp 1ˆ
u u

− −= + =  =u u e A y e A ε     (15a,b) 

 

Here û  is the estimated input interval average with ue  the vector of the corresponding 

inversion errors. Its euclidian norm (its length) can be huge if the noise is not equal to zero. 

This stems from the ill-posed character of the system matrix ( ) ( )+=A g HN N , which is also 

the sensitivity matrix of the output to the parameterized input. Its determinant, equal to  

( )1 Δ
m

H t  (it is a triangular matrix), can become very small in the case of a small time step 

corresponding to a good resolution of the exact impulse response. So matrix A  has generally 
a very high condition number (see the section about the singular value decomposition of a 
sensitivity matrix in lecture L3 about the basics of linear inversion) and one shows, see 
Appendix G: 

1/2

2

1

/ cond( ) / with for , , or

m

u i u

i

u e y  

=

 
  = =
 
 
e u A ε y Ψ      (16) 

 
This means that a high condition number acts as a multiplier of the noise-to-signal ratio, with 
a high relative error for the parameter to be estimated. 
 

One shows in the same lecture that the variance/covariance matrix of the  estimate of u  

depends linearly on the  variance/covariance matrix of the measurement noise. In case of an 
i.i.d. (independent and identically distributed) noise of standard deviation   , one shows that 

the standard deviation 
iu  of each component ˆ

iu  of the estimate of u is proportional to the 

corresponding square root of the diagonal component of the inverse of the information matrix 
TA A : 

 

( )
1

with
i

T
u iiC 

−

= =C A A     (17) 
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Since the lower triangular Toeplitz matrix A may be close to singular, the same is true for TA A  

and the diagonal components of C may be very large, resulting in high values of the standard 

deviations of the estimated parameters. 
 
So, model (11a) has to be modified in order to get stable estimates, see lecture L6 about 
inverse problems and regularized solutions. Many different methods exist, such as truncated 
singular value decomposition (TSVD), see Appendices C and D, or Tikhonov regularization, 
see Appendix  D, to give a few examples of full domain regularization techniques, where the 

solution is found in one shot on the  0 f, t time domain. They all require the adjustment, that is 

the optimization, of a regularization hyperparameter ph , in order to get a root mean square 

residual of about the same size, but not  lower, than the standard deviation of the i.i.d. noise: 
 

2ˆ( ( )) / with (.) (.)OLS reg p OLSJ h m J  −u y A    (18) 

 

Here ˆ
regu is the regularized (parameterized) solution, which depends on ph  while (.)OLSJ  is 

the ordinary least square sum, a scalar function whose argument is any value of the parameter 
vector. This rule for choosing the optimum regularization hyperparameter is called Morozov’s 
discrepancy principle [9]. 
Let us note that the non-regularized estimate defined by equation (15a) corresponds not only 

to the minimum of (.)OLSJ but to its zero and is in fact the Ordinary Least Square estimator  

noted as ˆ
OLSu : 

 
ˆ ˆ ˆ( ) 0OLS OLSJ =  =u u u     (19) 

 
This stems from the fact that matrix A  is square: the number of unknowns and of data are 

equal. This type of estimation is called exact matching. 
 
 
Another regularization technique, the function specification method, also called method of 
future time steps (FTS) [9] is detailed in Appendix E. It differs from the above mentioned 
techniques since it is not a whole domain, but a sequential regularization technique.  
 
Any of the regularization techniques (such as Tikhonov, TSVD, FTS) can be applied to get a 
regularized estimation of either the front face rate of heat flow (IHCP solution), see  (11a) or 
the front face temperature (VTS solution), see (11b), once a temperature   has been 

measured inside the wall.  
 
However, in the 1D case studied here, the model of the output of the unique sensor used 
depends on its position x , of the thermal properties ( , )a  of the constitutive material and on 

the level of the heat exchange coefficient eh  on the rear face and of its area for both the VTS 

case, see equation (A13a) defining 0xw , and for the IHTC case, see equation (A13a) defining 

xz . These  parameters may not be perfectly known. So, an error on eh  for example, can lead 

to some bias in the estimated values of 0  or 0 , if the sensitivity coefficient of one of the two 
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above transfer functions to this parameter is not negligible. To prevent this for happening, it is 
possible to use two temperature sensors instead of one. 

 
5. Solution of the inverse 1D problem using two outputs 

 
We consider now two temperature sensors, located at depths 1x  and 2x , with 1 2x x ,  and 

whose exact temperatures are 1  and 2 , see figure 2. 

 
 

 
 

Figure 2 – Heated slab on its front face, with two internal temperature observations 
 

The idea is to get a model that relates 1  and 2  to the front face temperature 0  and to the 

front face rate of heat flow 0 .  
 
So, starting from a quadrupolar relationship between points 0 and 1x  and between 0 and 2x , 

one shows in Appendix F, that equation (F6a) leads to the following model for the virtual 
temperature sensor : 
 

( )2 11
0 1 2

2 2

sinh ( ) )sinh ( )
with and

sinh ( ) sinh ( )
VTS VTS VTS VTS

x x p / ax p / a
w w

x p / a x p / a
    

−
= = − =

  (20a) 
 

In equation (20a) above, VTS  is the equivalent output for the 1D model of a virtual temperature 

sensor. In the Laplace domain, it is a linear combination of two exact temperature observations, 

1  and  2 . It depends on both of them through the following relationship : 

 

1
1 12 2 12

2

sinh ( )
with

sinh ( )

VTS VTS
VTS

x p / a
w w

x p / a
  = − =    (20b) 

 

where 12
VTSw is a correction transmittance used to make the equivalent temperature VTS  differ 

from  1  by substraction of the convolution product 2*vts
corw   , which takes the influence of 2  

into account. 
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So, this VTS sensor VTS , can be expressed as a linear combination of the two physical signals 

in the time domain too: 
 

( )1 1( ) ( ) * ( )VTS VTSt t w t  = −     (20c) 

 
with a single input single output equivalent model being : 
 
 

( )0( ) * ( )VTS VTSt w t =      (20b) 

 
 
In the same way, equation (F6b) in Appendix F leads to the following model for the inverse 
heat conduction problem : 
 

 

( )2 1

0 1 12 2

2

sinh ( - ) /1
with and

/ cosh ( / )

IHCP
IHTC IHCP IHCP IHTC

x x p a
z z w

S p a x p a
    


= = = −

  (21a) 
 

In model (21a) above, ( )IHCP t  is the equivalent output for the 1D model used for the inverse 

heat conduction problem using two temperature measurements, 1  and  2 . It depends on 

both of them through the following relationship : 
 

1
1 2 12

2

cosh ( )
with

cosh ( )

IHCP IHCP
IHCP cor

x p / a
w w

x p / a
  = − =   (21b) 

 

where 12 ( )IHCPw t is a correction transmittance used to make the equivalent temperature IHCP  

differ from  1  by substraction of the convolution product 12 2*IHCPw   which takes the influence 

of 2  into account. 

 
Remark 8 - Alternate derivation of the 2 temperatures output 1D models for the 2 inverse 

problems 
 

Let us note that the two models (21a) and (21a) can also be derived, by expressing the 

conductance ek  as a function of 0 0/xw  =  in equation (A13a) and as a function of 

0/xz  =  in equation (A13b): 

 

00

0 0

:
e e xe e x

e e
e x e e x e

C AA A
k k

B B B D

  

   

−−

− −

−−
= =

− −
  (22a, b) 
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If equations (22a) and (22b) are written for both locations 1 2andx x , elimination of ek  

in both resulting equations yields models (21a) and (21b). 
 
So, the VTS and IHCP problems, in case of 2 temperature measurements correspond to the 
deconvolution of the following model outputs: 
 

0

0

; and in the VTS case
( ) ( ) with

; and in the IHCP case

VTS VTS

IHCP IHCP

+
= = =

= = 
= = =

y θ H W u θ
y A u g H u

y θ H Z u Φ
N N

 (23a,b) 
 
The real advantage of this method using the signals of 2 sensors is to be independent of the 

value of the front and rear face conductances 0 and ek k  and to avoid a possible estimation 

bias caused by an imperfect knowledge of the external boundary conditions. 
  

6. Solution of the inverse multidimensional  problem using prior model identification 
 
The quadrupolar type models presented in sections 2, 4 and 5 can be used for VTS or IHCP 
applications if heat transfer is 1D in the wall. If it is not the case, a 2 or 3D detailed model, often 
numerical, has to be constructed. This type of model is useful for studying the internal type of 
transfer, and to make sensitivity studies of its outputs to its various structural parameters, but 
it does not guarantee the absence of bias for the solution of the inverse problem, a variation 
of temperature or of rate of heat flow on the heated area of the front face of the slab, because 
of errors of these parameters that are only “supposed to be known”.  
 
So, the alternate solution is to identify the direct model through a calibration experiment first, 
(this is called “model identification”) before using this model to estimate the front face 
temperature or rate of heat flow in the experiment of interest. In order to construct a (direct) 
reduced model through the experimental identification phase, one has to choose its model 
structure. In this tutorial, this structure is either a convolution product, which is developed 
below, or an ARX one, which is presented in section 7. 
 
We have focused in [11] on  a physical system that is modeled by a linear partial differential 
equation, such as the heat equation and of its associated boundary and interface conditions 
whose coefficients do not depend on time.  
 
We showed that, starting from steady state : 
 

- if at time t = 0 a unique heat or temperature source changes from a initial steady 

state level 0
ssu  to a transient 0 ( )ssu u t+ ,  

 
the variation at any point P  
 

- of temperature ( ) ( ) (P, t) - (P, 0)y t t T T= = , 

- or of (Fourier) heat flux (P, ) (P, 0)d dy t = −  in any direction d,  

- or of the rate of heat flow ( ) (0)S Sy t = −  through a given surface S, 
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is a convolution product between ( )u t  and a corresponding impulse response (P, )h t or 

( , )h S t . So even if the transfer is multidimensional, models (4a) and (4b) are still valid: 

 

( )( ) * ( )y h u y t h u t=  =     (24a,b) 

 
where, depending on the definitions of input u  and output y , the impulse response can be an 

impedance z , a power transmittance w , a temperature transmittance w or an admittance y

, according to the definitions given in section 2. 
 
In the same way, the parameterized versions (6) and (8a) of this type of model, under a scalar 
or a column vector/matrix form, still hold. 
 

1

1
1

Δ ( )k

k

j

j k jt
t

y h u

=

− +=  =
 y u hN    (25a,b) 

 
Remark 9 - A second condition on the thermal source (either a power change in watts or a 

temperature change in kelvins) for getting a convolutive model is that it should be 
a unique one, which means that its support in space should not change with time : 
the source should be fixed. 

 
Remark 10 – Whatever the dimensionality of the direct problem, one shows [11] the following  

property for any impulse response, that is the steady state form of equation (4b): 
 

0

with ( ) dss ss ss ssy H u H h t t


= =     (26a,b) 

with superscript ss designating a steady state value here.  
 

This means that if an asymptotic regime, that is a final steady state, is reached, 
the output change with respect to the initial steady state, is equal to the simple  
product between the input change and the time integral of the impulse response. 

 
The only difference with the 1D case is that the analytical expressions of the transfer functions 

h  are not available anymore. So, they have to be identified on an experimental basis, where 
both input and output are measured and where the parameterized forms of the convolution 
product (32b) are  written as: 
 

1

1
1

Δ ( )k

k

j

j k jt
t

y h u

=

− +=  =
 y u hN    (27a,b)  

 
In this tutorial, the material system is composed of a hollow half cylinder made out of cast iron, 
with a foil electrical resistance stuck to the central part of it inner surface, with a full 180° 
angular coverage, but with a height smaller than the half cylinder height, which makes 3D 
effects inside the cast iron wall. A thin thermocouple has been set between the front wall and 
the foil resistance and two other thermocouples have been inserted inside the wall. Both 

corresponding temperature rises 0  (front face) and 1  (internal) are measured, together with 
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the external ambient temperature through a 3rd thermocouple, as well as the electrical power 
P  dissipated in the foil resistance, and the objective is to reconstruct the power P using the 2 
temperature response only. 
 
 
So, the 2 experiments are the following ones: 
 
i) Calibration experiment 

 

A power step ( )P t  is imposed and  the experimental signals ( )calP t , 0 ( )cal t  and 1 ( )cal t  are 

measured. 

The 3 ( )h t  impulse responses 1( )z t , 2 ( )z t  and 10 ( )w t  defined by: 

 

( ) ( ) ( )0 0 1 1 1 10 0* ( ) ; * ( ) ; * ( )z P t z P t w t   = = =     (28a,b,c) 

 
are estimated using the inversion of the linear model (33a,b), using one of the regularization 

methods described in Appendices D and E. The corresponding regularized estimates ˆcalh  are 

called 0 1 10
ˆ ˆ ˆ, andcal cal calz z w (the tilda symbol over the 4 quantities has been removed here, for 

alleviating the notation) 
 
ii) Validation experiment 
 
A second experiment, used for validating the concepts of VTS or IHCP is made, with a different 

power simulation ( )valP t  and the same kind of temperature measurements 0 ( )val t  and 1 ( )val t

. The corresponding regularized estimates ˆvalu , using (27a,b) with ˆ valh h= are called: 

 

- 0
ˆ val  (case of the VTS, for 1

valy = and 10
ˆ calh W= ),  

- 0
ˆvalP  (case of the IHCP, for 0

valy =  0
ˆand calh Z= )  

- 1
ˆ ( )valP t  (case of the IHCP, for 1

valy = 1
ˆand calh Z= ) 

 

Of course, it is interesting to compare 0 0
ˆ andval val  , as well as the three thermal powers 

0 1
ˆ ˆ, ( ) andval val valP P t P . 

 
Remark 11 - Contrary to the model used for a temperature estimations with a unique 

temperature sensor presented in section 4, see equations (9a,b) and (10a,b), the 
models used in the identification/validation technique do not requires the 
knowledge of any boundary conditions, here the conductance of the heat losses 

on the rear face ek , since they are implicitely taken into account in the phase of 

calibration of the impedances and transmittance. However, the IHCP presented 

here differs since it is not the front face rate of heat flow 0  which is estimated, 

but the dissipated power P . Hence, if 0   looked for too, its estimation would 

be, with the only use of the 0
val data of the validation experiment: 
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0 1 0 0
ˆ ˆˆ val val nom valP k = −      (29) 

 

So, a nominal value 0
nomk  for the conductance of the heat losses on the front face 0k  is 

compulsory. 
 
Only the use of a detailed model describing the 3D transfer would allow to reach the estimation 

of 0k using surface or internal temperature measurements in the wall. 

 
 
7. Use of an ARX model for IHCP and VTS problems 

 
7.1 Structure of an ARX model 

 
An AutoRegressive with eXogenous input model (ARX) has the following structure, in the 
Single Input – Single Output (SISO) case :  
 

1

1 1

( , ; , , )
a b

r

n n

ARX
k i k i j k j n k k a b r k

i j
i k j k

y a y b u e y n n n e− − + −

= =
 

= − + + = +  y u  (30) 

 

The output ( ) , with and 0k k ky y t t k t k= =    , of the model at time kt  is supposed to be 

a linear combination of the 0an   outputs at the previous times k iy − , the « autoregessive 

terms », and of the 0bn   inputs at present and previous times 1( )
ri j nu t − − + , the « eXogeneous 

terms », with a possible time lag equal to  rn t , with 0rn  . 

 
Remark 12: The perturbation term ke  is supposed to be a white noise, that is an independent 

and identically distributed random variable, with zero mean. This definition of a 
white noise is valid within the context of study of time series only (in signal 
analysis, the Gaussian character of this random variable is added). This type of 
ARX model, which belongs to what is called a "grey box" model, has been 
extensively studied by Ljung [12]. The “grey” character of this model only 
concerns cases where the existence of an exact deterministic model linking 
output to input(s) is not known. This is not the case here, in LTI heat transfer 
since, in the SISO case, an impulse response exists linking output to input. 

 

Remark 13: Perturbation ke  is also called “equation error” term, since it is an additive term 

that applies to the right member of equation (30), where the outputs are present 
on both sides of its equal term. Another model exists,  called Output Error model, 

where this error, noted 
OE
ke  here, that applies to the output only: 

 
where ( , ; , , )OE ARX

k k k k k a b ry x e x y n n n= + = y u    (31) 
 

This error 
OE
ke is simply the output measurement noise, noted y in equation (14). 
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Remark 14: Contrary to what can be found in Ljung [12], the right term of model (30) includes 

a term 1 ka u  (for a zero delay: 0rn = ). This term is useful in cases where input 

and output occur at the same location. This is for example the case for the front 
face temperature response to a front face thermal power thermalization, that is 

for  0h z= in model (9a,b). 

 
 

The order of the ARX  model is determined by the triplet ( , , )a b kn n n . In the present context 

(LTI heat transfer with SISO configurations) : 
 
- the output y  is an internal or surface temperature  variation (P, ) (P, ) - (P, 0)t T t T =  

at point P in the wall, 
 

-  the input u  corresponds either to a source or to a pseudo source ( )u t , with 0u =  (VTS 

case) or 0u =  (IHCP case). 

 
7.2 Link between ARX and convolutive models 
 

We notice that if an  is null and if bn  is equal to the number m  of times of measurement then 

the ARX model is similar to the parameterized form (6) of the convolutive model presented in 
section 3.1. This means equation (30) can be recasted to make averaged values of the 

corresponding input ( )u t  over the  1,k kt t−  interval appear. 

 
This property is demonstrated below, where 2 vectors gathering the a’s and the b’s 
coefficients are introduced: 
 

 

 

1  0 0 where dim ( ) 1 ;

0  0 0 0 where dim ( ) 1  ; 

T

T

large na large na

m na

T

T

large nb large nb

m nr nbnr

a a a m x a a a

b b b m x b b b

− −

− −

 
 = = =
 
 

 
 = = =
 
 

a a a

b b b

1 2 1 2
1

1 2 1 2

(32a,b) 
 

The matrix function (.)N  defined in equation (8b) is introduced here, with its dimension k

being equal here to the number of observation points m  and the product ( ) largey aN  is 

calculated using a partition of both matrices: 
 

 ( )
( ) ( )1 11 1

1 0

( ) ( ) ( ) ( )comp

large a a na x a

m na xm na x − −− −

    
    

   = + = +    
          

y a y y y a y y a1N N N 0 N
00

(33c)  
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Here the dimensions of matrix  ( )a yN  are  am x n  and this matrix, as well as its right 

complementary matrix  ( )comp

a yN , are given below, using Matlab© convention for designing 

the coefficients of a matrix : 
 

( ) ( , 2 : 1) and ( ) ( , 2 : ) with ( )comp

a y a a y a ym n m n m= + = + =y y yN N N N N N (33d) 

  

The same kind of partition is made for the product ( ) largeu bN : 

 

( )
( ) ( )

x

11

0

( ) ( ) ( ) ( )

nr x

comp

large m nr b b nb x b

m nr nb xm nr nb x − −− −

    
    

   = + =    
          

u b u y b u b

1

1

0
N 0 N N 0 N

00

(33e) 

 

Matrix ( )b uN , of dimensions bm x n , as well as its right complementary part, are defined 

below: 
 

( ) ( , 1: ) and ( ) ( , 1: ) with ( )comp

b u r r b b u r b um n n n m n n m= + + = + + =u u uN N N N N N  (33f) 

 
One notices that equation (30) is the kth line of vector equality: 
 

 ( ) ( )ARX

a b= − +y y a u bN N     (33g) 

 
So, ARX model (30) is given the following form : 
 

( ) ( ) where ( ) and ( )ARX ARX

large large large large=  = = =y a u b A y Β υ A a Β bN N N N   

 
     (34a) 

This gives, in the case without any lag ( 0rn = ):  

 

1

1 2 1

1

1 2

1 2 1

1 0 0 0 0

1

1 and

0 0

0 0 1 0 0

a b

a b

a b

n n

n n

n n

b

a b b

a b b

a a b b

a a b b b

   
   
   
   
   
   = =
   
   
   
   
      

A B  (34b) 

 

If a lag is present, a matrix of size xrn m  full of zeros  has to be inserted above the lines of 

matrix B  given by equation (34b). 
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Equation (34a) can be be given the following form, that can be related to form (8f) of the 

convolutive model, denoted convy here : 

 
1 2; ( ) ( )ARX conv t−= = y A B u y f h uN N   (35a,b) 

 
Equating (39a) and (39b), for any value of the input u  yields: 

 

2 11
( ) with ( )

t

+ −= =


h C C f A BN N    (36c) 

 
This means that if the outputs of both models fit noiseless data in a perfect way, the first column 

of matrix C , formed with the a and b coefficients of the ARX model, should be equal to the 

vector  composed of the sampled form (13) of the impulse response ( )h t  on the  0 , ft

interval, for the same time grid : 
 

2 11
( ) ( ) ( )large large

t

+ −=


h f a bN N N 1   (36d)  

 
where 1 is the vector of size 1m x  that is full of ones. Since there is no way to get access to 

instantaneous values of the impulse response in the general case, see section 4.2.1 above 
and equation (12c), the vector of interval averages of the impulse response is deduced from 
the parameters of the ARX thanks to the following equation : 
 

11
( ) ( ) ( )large large

t

+ −=


h f a bN N N 1    (37) 

 
Remark 15: Equation (37) (40) shows that there is an infinity of ARX models that yield the 

same parameterized impulse response h . In fact, let us assume first that an  ARX 

model of order ( , , )a b kn n n  has been identified for a calibration experiment, with 

an estimated set of parameters  ˆˆ ,a b  (see section 7.3 below) with a satisfactory 

equation error residual (the root mean square of the ' ske  in equation (30) and 

has been validated in another experiment, see section 7.  

                     Let us take next any vector d  of size 1m x  with a unit first coefficient 1 1d = , which  

defines a lower triangular Toeplitz matrix ( )=D dN . A set of two resulting vectors 

 ˆ ˆˆ ˆ ,large large large large' '= =a D a b D b  is defined, starting from the set  

 ˆˆ ,large largea b  defined in (32a,b). Extraction of alternate ARX parameter vectors 

 ˆˆ ,' 'a b  based on these equations yield exactly the same estimated impulse 

response vector 
ˆ
h . In this transformation of ARX parameters, the an  order keeps 

unchanged, while the andb kn n  orders do not remain a priori the same. 

 
In the present section, the derivation of the parameterized impulse function, starting from the 
ARX parameters has been showed. The inverse procedure, the expression of the ARX 
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parameters for a given impulse function is more difficult, because of their above non-unicity. 
The interested resder can find such a problematic in reference [16]. 
  
7.3 Identification of the ARX parameters and their validation 
 
7.3.1 Estimation of the ARX parameters for three given orders 
 

The parameters ja and jb  have to be estimated for a given order ( , , )a b kn n n . We need two 

different input/output sets.  
 
 
The first set is called the calibration set and the second one the validation set. The calibration 

experiment is used to estimate ia  and jb . The matrix form (33g) of the model is written under 

the form: 
 

 with ( ) ( ) anda b 

 
= = − =  

 

a
y S β S y u β

b
N N   (38a) 

 

Matrices ( )a yN  and ( )b uN  are defined in (33d) and (33f), while the dimensions of the 

sensitivity matrix  S  , which results from a concatenation of these matrices, is x ( )a bm n n+  

with a parameter vector of length ( )a bn n+ . 

 
This sensitivity matrix depends on both input and output, and can have a stochastic nature 
because of possible presence of noise in these data, see Lectures L3 and L5. However the 
philosophy of the ARX model is to get a model that fits them in a robust way, whatever their 
nature, see section 7.3.2 below. So, in spite of the possible non linear nature of this estimation 
problem, an ordinary least square estimator is used, based on the data of the calibration 
experiment: 
 

( )
1

ˆ ˆ ˆˆˆ (1: ) and ( 1: )T T
a a a bn n n n  

−

=  = = + +β S S S y a β b β   (38b) 

 
The  root mean square of the equation error is calculated next : 
 

ˆˆwhere ( , )
T

RMS ARXe
m

= = −
e e

e y y a b    (38c) 

 
The quality of the fit is characterized in terms of percentage : 
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( )

( )

( )

2

2

1

2

1

2

1 1

ˆˆ( , )

100 1 100 1

1 1
where and

m
ARX

k k
RMS

k

m shape
ave

k

k

m m
ave shape ave

k k

k k

y y

e
fit

s
y y

y y s y y
m m

=

=

= =

 
 −

    
 = − = −         − 

  

= = −





 

a b

  (38d) 

The quantity shapes above is a statistical standard deviation characterizing the dispersion of the 

output around their arithmetic average avey . It is equal to zero in case of a constant output. 

So, it is related to the shape of the corresponding y versus t  plot.  

 
Of course, once the ARX parameters have been found with a satisfactory fit for the calibration 
experiment, their validation requires comparisons of the output of the identified model with the 
output of a second experiment with a different input. 
 
7.3.2 Interest of ARX models and Choice of the optimal order of  an ARX model and its 
validation 
 
In experimental identification, or model reduction, the interest of using an ARX model results 
from its parsimony: it uses a few tenth of parameters at most, even in the non SISO cases 
where several outputs and/or inputs are present (MISO, SIMO and MIMO) with respect to a 
convolutive structure based on the identification of a whole function, the impulse response. 
Estimation of its parameters is fast and easy (linear least squares) and generally provides a 
very high percentage of fit, see (41d). A useful corresponding reference is [17]. 
 

However, there is no way to find the optimal orders ( , , )a b kn n n , that is the corresponding point 

in 3  in a single shot. It requires the  implementation of multiple estimations for the same 

input/output data: so a set P of possible candidates has to be found , with a variation of each 
order.  
 

For example, one can test  11 integer values  for  an  in  the [0,10]  interval, and similarly the 

same number of values for bn  and rn in the same interval, which gives a set P of 113 different 

estimates. Once this set obtained, the following version of Akaike’s Information criterium, 
valid for small samples, that is for small sizes of P,  can be minimized. In the SISO case, this 
criterion is: 
 

( )
2 2 ( 1)1 ˆˆAIC = ln ( , , ) ln(2 ) 1ARX a b

c r

a b

m n n
m n m

m m n n


+ + 
− + + + 

− − 
y y a b  (39) 

 
This criterion is based on a compromise, between quality of fit and the complexity of the model, 
that is its order. It penalizes models with a high number of parameters that tend to over fit, that 
is to mimic the noise in the data. So it can be regarded as a way to regularize the estimation 

of the ARX parametres, together as its structure (the level of rn ). The interested reader can 
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refer to [18], especially for finding applications in cases of multiple inputs or outputs. In a similar 
way, a modified version of the ARX model, designed for an IHTC problem can be found in [19]  
 
 Remark 16: Akaike’s information criterion minimizes the Kullback-Leidler information, that is 

the distance between a model with a given structure and a given number of 
parameters and the true unknown model that can explain the data. This 
minimization is made using the maximum likelihood estimator (MLE) of the 
parameters, here the a and b coefficients, as well as the standard deviation   

of the equation errors vector e , see (38c), whose coefficients are thet errors ke  

at different times, defined in (30). This stochastic vector is supposed to be 
independent, identically distributed and of zero expectancy here. Here, in the 

SISO case, the estimated value of their standard deviation is ˆ RMSe = , see 

(38c), the number of MLE estimated parameters being equatl to  1a bn n+ + . 

 
 
 
 
Appendix A - Laplace transforms and thermal quadrupoles: a reminder 

 
We assume that 1D heat transfer occurs in a medium where temperature   is function of the 

location x and of time t and are interested by a slice of this medium, corresponding to interval 

[ ]in outx , x , of thickness x . This slice, see figure A1, is composed of a homogeneous 

material, whose thermal conductivity  , density  and specific heat c are supposed to be 

constant. There is also no volumetric heat source in the slice and its initial temperature is 
supposed to be zero. Under these conditions, the heat equation, as well as the initial conditions 
are: 

 
 

  
=   



2

2

1
for and 0in outx x x t

a tx
   (A1) 

 
0 at 0 for in outt x x x = =      (A2) 

 
The local heat flux   (W/m2) and the rate of heat flow  (W), for the area S (m2) of a 

plane surface normal to the x axis, are introduced: 
 




 S
x

t,x =



= and-)(    (A3) 

 
Let us remark that the sign of   and of   depends on the orientation chosen for the x 

axis. The Laplace transforms of temperature and flux are introduced: 
 

     = 0

( ) ( ) exp (- ) d for or
t

x, p x, t p t t  or    (A4) 
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Figure A1 – 1D heat transfer 

 
 
Under these conditions, the temperature-heat flux vectors in the Laplace domain at the two 
ends of the considered interval verify the following matrix/vector equation : 
 
 

















=









),(

),(

),(Δ),(Δ

),(Δ),(Δ

),(

),(

px

px

pxDpxC

pxBpxA

px

px

out

out

in

in








   (A5a) 

 
with: 
 









−===

===

0Δandc/;)/(Δsinh/

)/(Δsinh
/

1
;)/(Δcosh

inout xxxaapxapSC

apx
apS

BapxDA



   (A5b) 

 
Equations (A5a) and (A15b) are strictly equivalent to system (A1) – (A2). 
 
Let us note that quadrupolar equation (A5a) is valid whatever the boundary conditions in 

in outx and x , see [1] for more details.  

 
We will know set these 2 boundary conditions, for the specific case of the slab shown in figure 

A2, where =0inx  and  =inx e , and for the surface heat source )(tP  (W) absorbed by the front 

face ( =0inx ).  
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Figure A2 – Heated slab on its front face, with linear heat losses on both faces 
 
The boundary conditions are: 
 

0for0at)-(-)(- 00 ==



= txShtP

x
S 


   (A6a) 

0for0at)-(- 0 ==



= txSh

x
S e 


                         (A6b) 

 
Let us note that, contrary to what seems to mean figure 2, the sign of ( )q t does not depend on 

the orientation of the x axis. Since it is a source, the thermodynamics convention is applied: if 
heat is added to the front face of the system, which is the case here, ( )q t is positive, while 

( )q t is negative if heat is removed from it (case of a refrigerated front face). 

 
So, equations (A1) and (A2) reduce, if only the front and rear face are observed, to the 
quadrupolar equation, where the p  argument has been omitted in the different functions: 

 





==

===
















=









DC,B,AKp,eKK

exp,x

DC

BA

e

x

e

e

ee

ee

orfor)(

or0andorfor)(
with

0

0









  (A7) 

 
In the same way, boundary conditions  (A6a) and (A6b) are written as: 
 

00
0 0

0 0

1 0
where

1
k h S

kP





    
= =    

    
         (A8a)

 Shk
k

ee
e

ee

e =















=








where

01

01 




             (A8b) 

 
Equations (A7), (A8a) and (A8b) reduce to one single equation, by elimination of the 
temperature/flux vectors at the two faces of the slab: 
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















=
































=









001

01

1

01

0

0 e

TT

TTe

eee

ee

DC

BA

kDC

BA

kP


  (A9) 

 
The coefficients of the product matrix are: 
 

eeTeeeeeeT

eTeeeT

BkDDBkkDkAkCC

BBBkAA

000 ;

;

+=+++=

=+=
  (A10) 

 
Let us note that no boundary condition was present in equation (A7), which links the vectors 
of temperature and of rate of heat flow, while both boundary conditions are taken into account 
in equation (A9), that relates the temperature/surface heat source vectors, where the surface 
heat source )(tP is present at the front face, with a corresponding zero surface heat source at 

the rear face. 
 
The front face flux can be considered as a “pseudo source”, with the following responses in 
the Laplace domain, using equations (2a), (2b) and (2c), in the main part of this text: 
 

' 'with / / ( )T e e ez z z w A C k D =  = = +0 0 0 0 0 0    (A11a) 

 

' 'with / 1/ ( )e e e e e e ez z z w C k D  = = = +0 0    (A11b) 

 
 

The outputs   and    of the model can also be calculated at any depth x  in the slab, see 

figure 1, using (2c): 
 

with (A12a)
1 0

1 0
with (A12b)

e x e e x
x x

Te x e x e

e x e x e e x e e x
x x

T

A k B
z P z

CA B

C D k C k D
w P w

C

 


 




− −

− −

− − − −

+
= =

       
=        

+        = =


     

 

where xeA − , xeB − , xeC −  and xeD − are given by equation (A5b) in Appendix 1, replacing xΔ  

by xe − .  

 

Output   is expressed in terms of the two above pseudo sources, using equations (2a) and 

(2b) in the main part of the text: 
 

0 0 0with e x e e x
x x

T

A k B
w w

A
  − −+

= =    (A13a) 

 
 
 

0
' 'with e x e e x
x x

e e e

A k B
z z

C k D
  − −+

= =
+

    (A13b) 

 

176/339



 
 
 
 
METTI 8 Advanced School   Ile d’Oléron, France 

Thermal Measurements and Inverse Techniques             Sept. 24th – Sept 29th, 2023 

 

Tutorial 7 – Identification of Transfer Functions and of Boundary Conditions – page 31/42 

In the same way, output   is expressed in terms of the temperature pseudo source, using 
equation (2a) in the main part of the text: 
 

x0 0 x0with e x e e x

T

C k D
y y

A
  − −+

 =    (A13c) 

 
Appendix B- Inversion of the Laplace transform 
 
Inversion of an analytically known Laplace transform ( )p , in order to retrieve its original ( )t

, is an ill-posed problem. This original can be constructed for continuous values of the time 
variable t in 4 cases: 

 
- for very specific expressions of ( )p  given in tables of analytical direct and inverse 

Laplace transforms; 
- use of the usual properties of this transform (derivative, integral, translated function, 

shift in time, change of scale, long or small times approximation) 
 

- when ( )p  is a rational function of p , where developments in terms of its zeros and 

poles can be constructed; 
- using the Bromwich’s (also called Mellin’s) contour integral in the complex plane. 

 
In practice, it is more convenient to use a numerical inversion algorithm. Several are available, 
see Chapter 9 in [1] and [2]: 
 

- Gaver Stehfest’s algorithm [3, 4, 5], which is very simple to implement, with possible 
singularities in t = 0 but not convenient for non monotoneous functions or periodic 
functions over the [0, +∞] interval, 

- Inversion based on Bromwich integral, using either a classical Fourier transform, or 
an inverse fast Fourier transform, see Appendix 9.2 in [1] and Hsu and Dranoff [6], 

 
In this second class of inversion methods, de Hoog’s algorithm [7], which is implemented under 
the “Invlap” name as a script in Matlab®, provides an acceleration of the convergence, while 
den Iseger’s algorithm [2, 8] provides an improved quadrature of the  Bromwich integral. 
 
If none of the above algorithms gives satisfactory results, an hybrid technique can be 

implemented, using a function ( )f p  whose inverse transform ( )f t  is known analytically or 

numerically. If the inverse Laplace transform ( )g t  of the product ( ) ( ) ( )g p f p p=  can be 

reached numerically, the parameterized form of the corresponding convolution product is: 
 

( )
1

( ) ( )
−

=  =g f f gM M     (B1) 

 
So, this technique consists in transforming the Laplace inversion into a deconvolution problem. 
 
 
 
Appendix C – The Singular Value Decomposition of a matrix and the SVD version of the 

ordinary least square estimator 
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Any rectangular matrix (called K here) with real or complex coefficients and of dimensions (m, 
n) with nm   (SVD also exists in the case nm  , but it won't be dealt with here), can be 

written under the form : 
 

 tVWUK =  that is  























































=























t

nw

w

VUK

0

0


1

  (C1) 

 
where superscript t stands for the conjugate transpose of the corresponding matrix. If the 
coefficients of  K  are real, it is simply its transpose. 
 
This expression is sometimes called "thin" or “economy size” SVD and involves  
 
- U , a unitary matrix (orthogonal if K is real) of dimensions (m, n) : its column vectors (the left 

singular vectors of K) have a unit norm and are orthogonal by pairs : n
t IUU = , where nI  is 

the identity matrix of dimension n. Its columns are composed of the first n eigenvectors Uk, 

ordered according to decreasing values of the eigenvalues of matrix  tKK . Let us note that, 

in the general case, m
t IUU  . 

 

- V , a square unitary matrix (orthogonal if K is real)  of dimensions (n, n), : n
tt IVVVV == . 

Its column vectors (the right singular vectors of K), are the n eigenvectors Vk, ordered 

according to decreasing eigenvalues, of matrix  KK t ; 
 
- W , a square diagonal matrix of dimensions (n x n), that contains the n so-called singular 

values of matrix K , ordered according to decreasing values : nwww  21 . The 

singular values of matrix K  are defined as the square roots of the eigenvalues of matrix KK t

. If matrix K  is square and symmetric, its eigenvalues and singular values are the same. 
 
Another SVD form called "Full Singular Value Decomposition" is available for matrix K. In this 
equivalent definition, both matrices U and W are changed: the matrix replacing U is now square 
(size m x m) and the matrix replacing W is now diagonal but non square (size m x n). In the 
present case where nm  , this can be written: 

 

  )()(dimand;with
x)(

0000 m - nxmcomp
nnm

comp
t =












===

−

U
W

WUUUVWUK 0  

(C2a) 
or: 
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































































=























tn

comp

w

w

VUUK

00

00

0

01









 (C2b) 

 

Matrix compU is composed of the (m - n) left singular column vectors not present in  U. So, the 

concanated matrix 0U verifies now: 

 

m
t

compcomp
ttt IUUUUUUUU =+== 0000      (C3) 

 
This singular value decomposition (C1) can be implemented for any matrix K ,  with real or 
complex value coefficients, for nm  . 

 

We assume now that the model xSxy   )( =mo is linear and that all the parameters gathered 

in the parameter vector x have the same unit. We use the SVD of the sensitivity matrix S , 

that is we write the generic equation (C1) for SK =  which yields 
tVWUS = . Substitution 

of this expression in the OLS estimate equation, see Lecture 3, gives: 
 

( ) yUWVySSSx ttt
OLS

ˆ 11 −−
==     (C4) 

 
This identity is valid only if matrix S  is of full rank, which means that its smaller singular value 

)(1 Sw  should be strictly positive. As a consequence the covariance matrix can be written the 

following way: 
 

2 2ˆcov ( ) t
OLS 

−=x V W V     (C5) 

 

This shows that the smallest singular values present in matrix 2−W will bring a dominant 
contribution to the diagonal coefficients of )(cov x , that is the variances of the different 

parameters.  
 
Appendix D – Truncated SVD and Tikhonov regularization of zero order 
 
D.1 TSVD regularization 
 
In any linear inverse input problem, the OLS solution, see equation (C4) in Appendix C, 
minimizes the following least square criterion: 
 

( ) ( )xSyxSyxSyx −−=−=
t

J
2

)(    (D1) 

 
Ideally, if no noise is present in the data y , the best option is to choose a parameterization 

based on the largest possible number of parameters n, that is n equal to the number of 
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measurements m. However, because of the presence of noise, the larger n, the larger the 
condition number of the inversion and the largest the standard deviations of the estimated 

parameters because of the smallest singular value )(Snw . 

 
So, one of the solution is to replace, in the SVD expression of the OLS minimum, the inverse 

of the matrix W of the singular values by a its truncated inverse 1−
W , see equation (C4) in 

Appendix C,: 
 





























=−

0

00

1

01

1

2

1

1





 w/

w/

w/

W    (D2) 

  
 
So, the regularized TSVD estimate is: 
 

yUWVx tTSVDˆ 1−=      (D3) 

 

Let us note that W  cannot be calculated since the −n  smallest singular values of S , 

nn w,w,,w,w 121 −++  , have been given an infinite level. 

 

The TSVD solution (C3) can be rewritten using the left and right singular column vectors kU  

and kV : 

 

  ( ) k
t
k

k k

t

t

t

TSVD

w

w/

w/

w/

ˆ VyUy

U

U

U

VVVx 
=

=







































=







1

2

1

2

1

21

1

10

1

01

   (D4)  

 
The discrepancy principle can be adopted for the choice of the optimal value for  : 

 
2

1
2 )(and)(   mˆJmˆJ TSVDTSVD  +xx    (D5)  

 
D.2 Tikhonov regularization of zero order 
 
Another popular method of regalurization is based on a penalization of the OLS sum (A1) by 
an additive term that would prevent and explosion of the standard deviations of the different 
coefficients of x . Tikhonov regularization of zero order consists in minimizing the following 
criterion: 
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( ) ( ) xxxSyxSyxxSyx tt
J  +−−=+−=

22
)(    (D6) 

 
The solution is explicit: 
 

( )
1

0ˆTik t t
n 

−

= +x S S I S y      (D7) 

 

This can be written using the SVD decomposition of S  : 

 

( ) yUWVxIVWV tTik
n

t ˆ =+ 02
     (D8) 

 

Using the fact that n
t IVV = , the preceding equation can be simplified: 

 

( ) ( ) k
t
k

n

k k

kt
n

Tik

w

w
ˆ VyUyUWIWVx 

=

−

+
=+=

1

2

120


    (D9) 

 
Comparison of OLS (equation (C4) in Appendix (C), TSVD (D4) and Tikhonov (D9) estimates 
show that both OLS and regularized solutions can be written under the common form: 
 

( ) k
t
k

n

k

kreg fˆ VyUx 
=

=

1

    (D10) 

 

where coefficients kf  are called “filter factors, see [13] and are defined by: 

 

• mnkfk == to1for1  without any regularization (Ordinary Least Squares) 

 

• mnkfmnkf kk +==== to1for0andto1for1  for TSVD 

regularization  
 

• mnk
w

w
f

k

k
k =

+
= to1for

2

2


 for Tikhonov regularization of zero order 

 

Appendix E – Regularization using future time steps 

 
We recall here one of the regularization technique, the function specification method, also 
called method of future time steps (FTS) [9], which is not a whole domain, but a sequential 
regularization technique.  
 
So, equation (7e) in section 3.1, that is Duhamel’s form of the convolution product model, that 
uses the variations of the step response on a time grid, as well as the interval averages of the 
input, is rewritten : 
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1

1k

k

k

j

k j jy y (t ) H u

=

− +=       (E1) 

 
A change in the notation introduce in equation (7d),  is made here : 
  

1 1 1( ) and D Dj j j j j j j jH H t H H H H H h+ + += = −  =  =  

 

This means that the variation of the step response at time jt , is not considered in the past time 

step, that is in  interval 1j jt , t− 
  ,  but in the future time step, that is in the 1j jt , t + 

  interval. 

This means that equation (E1) becomes, for the kth output :  
 

1

Dk

k

j

k j jy H u

=

−      (E2) 

In equation (E2), the tilde symbol has been removed for the input over the 1j jt , t− 
   interval, 

in order to simplify the notation. One suppose next that the previous inputs  have already been 

estimated, with values equal to ˆ , for 1 to 1ju j k= −  and that  the current estimate ˆ
ku is 

looked for. 
 

One assumes here, on a provisional basis, that the following ( 1)r +  components 1tok k ru u + +

are equal to a common value q : 

  

1 2k k k k ru u u u q+ + += = = = =                   (E3) 

 
 

Equation (E2), is written then, for the ( 1)r +  corresponding times: 

 
1

0 00

1 1

1 1

1 1 1 0 1 1 0 10

1 1

1

0 1

1 1

0 10

ˆD D D D

ˆD (D D ) (D D )

ˆD D (D D + +D )

(D D + +D )

k k

k k j j k j j k q

j j

k k

k k j j k j j k q

j j

k r k

k r k r j j k r j j r

j j

k r rq

y H u H u H q y H q

y H u H u H H q y H H q

y H u H u H H H q

y H H H q

−

− − =

= =

+ −

+ + − + − + =

= =

+ −

+ + − + −

= =

+ =

=  + = +

=  + + = + +

=  + +

= + +

 

 

 

 (E4) 

 

Here the notation 
0

, for to ,j q
y j k k r

=
= +  designates temperature at time 

,withjt t j k=   corresponding to a relaxation of the temperature field reached at time 
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1kt t −= , that is the time at which the last non zero input 1ku −  ends. So, it is a relaxation 

temperature which is calculated using the already estimated ( 1)k −  input levels 

ˆ ,for 1 to 1ju j k= − .  

 
These equations can be put under the following vector/matrix form: 
 
 

ˆwithfuture relax relax relax pastq= + =y y S y H u    (E5a,b) 

with 

 1 1 2 1
ˆ ˆ ˆ ˆ;

TTfuture past
k k k r ky y y u u u+ + −= =   y u    (E5c,d) 

 
and 

1 0 1 2 1

2 0 1 1 2

1 1 2 1 2 1

D D D D

D D D D D
;

D D D D D D

k k

k krelax

r r k r k r r

S H H H H

S H H H H H

S H H H H H

− −

−

+ + − + − +

     
     

+
     = = =
     
     

+ +     

S H   (E5e,f) 

 

The dimensions of matrix relaxH  are ( 1) x ( 1)r k+ − . Let us note that this matrix is just a sub 

matrix of Toeplitz matrix ( )HM . 

 

Parameter q , and as a consequence the new value ku  of the input is then estimated in the 

ordinary least square sense, using the measured values of exp
futurey : 

 

( ) ( )
1

1
exp exp

111
2 1

1

1
ˆˆ ( )

r
T T relax relax

k k k jk jfuture r

j
j

j

u q S y y

S

+
−

+ −+ −+

=

=

= = − = −


S S S y y  (E6) 

Once ˆ
ku has been calculated, the same procedure is repeated for calculating 1

ˆ
iu + , with a new 

common parameter q for future inputs 1 1tok k ru u+ + + , and so on. 

 
In this technique, the regularization hyperparameter  is the number r of future time steps. If  r  

is equal to one, the future time step estimate is equal to ˆ
OLSu .  

 

Appendix F – Construction of models for 2 points VTS and IHCP 

 

The following quadrupolar relationship is written, between points 0 and 1x  and between 0 and 

2x : 
 

0 1 21 1 2 2

0 1 21 1 2 2

A B A B

C D C D

  

  

        
= =        

             

    (F1) 
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where the 4 coefficients of each 2 x 2 matrix are based on the corresponding thickness, see 
equations (A5a) and (A5b) in Appendix A, that is for example : 
 

cosh ( ) for 1 or 2 and /i iA x i p a = = =    (F2) 

 

Elimination of 2  between the two scalar equations resulting from the equality between the 

two matrix  products of (F1) yields:  
 
 

Δ
1 1 2 Δ Δ 2 1

Δ Δ

1 1
with cosh ( Δ ) ; sinh ( Δ ) ; Δ

A
A x B x x x x

B B S
    

 
= − = = = −   (F3) 

 

Substitution of this expression for 1  into the first and into the second lines of the first matrix 

equation (F1) yields: 
 

2 1
0 1 2

Δ Δ

B B

B B
  = −     (F4a) 

 

2 1
0 1 2

Δ Δ

A A

B B
  = −     (F4b) 

 
Inversion of the system of equations (A4a) and (A4b) yields: 
 

1 1 0 1 0A B  = −     (F5a) 

 

2 2 0 2 0A B  = −     (F5b) 

 

After elimination of 0  between (A5a) and (A5b), one gets the following result, which will be 

used as the model of a two points virtual temperature sensor of the front face temperature: 
 
 

1 Δ
0 1 2

2 2

with andVTS VTS VTS VTS

B B
w w

B B
    = = − =                          (F6a) 

 
 

Elimination of 0  between the same equations lead to the model for a two points estimation of 

the fronf face rate of heat flow: 
 

1 Δ
0 1 2

2 2

with andVTS IHCP IHCP IHCP

A B
z z

A A
    = = − =   (F6b) 

 

Appendix G - Interest of the Singular Value Decomposition in linear parameter 
estimation 
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If all the n parameters in a parameter vector x  are looked for, for a linear model xSxy   )( =mo

, where m noised measurements εxSy +=    are  available, and if noise ε  is independent 

and identically distributed (i.i.d.), that is mIε 2)(cov = , its Ordinary Least Square (OLS) 

estimator can be written (see Lecture 3 of this Metti school): 
 

( ) ( ) 121
)(covand)(Ewith

−−
=== SSxεySSSx t

OLS
tt

OLS
ˆˆ

0  (G1) 

 

Of course, in order for the inverse of the information matrix SS t
 to exist, matrix S  must not 

be singular, which means that its n sensitivity column vectors should form a free system of 

vectors (see lecture L5 in this series): the rank of S  should be equal to n. 

 
The potential difficulty in the estimation of x  may stem from the possible ill-conditioning of the 

square information matrix SS t
 whose inversion makes the standard deviations of its different 

parameters jx̂ become very large with respect to their exact value. So, a normalized criterion 

can be constructed in order to assess the quality of the estimation of the n parameters.  
 
We assume here that all the coefficients of x  have the same unit as all the coefficients of y . 

This is the case for input estimation problems where y is for example the vector of the sampled 

measured temperatures at m times it and x  the parameterized heat source )(tx using a basis 

composed of n functions )(tg j : 

 

   t

ninii

iiparamj

n

j

jparam

xxxtgtgtg

ttxtgxtxtx

 212

1

and)()()(with

)()()()()(

==

== 
=

xg

xg
 (G2) 

 
In this parameterization a column-vector x  composed of n coefficients has replaced a function 

)(tx  of infinite continuous dimensions. 

 
So, it is now possible to write the thin SVD decomposition of S, which uses the notion of 
Euclidian norm of different true vectors, see equation (C1) in Appendix C: 
 

tVWUS =      (G3) 

 
It is now possible to calculate the amplification coefficient of the relative error kr : 
 

( ) exactx

exactmo

exactx

r
ˆ

/

/
k xxe

xyε

xe
ε −== with)(   (G4) 

 
Using the properties of matrices U and V described in Appendix C, one can show: 
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( )
SSVWUUWVε

xVWUxSxy

εUWVεUWVe
+−

−−

=






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One can recognize in the right-hand term of the last inequality (G5) the product of the norms 
of two matrices. The second matrix is simply the SVD form of the reduced sensitivity matrix 

*S while the first one is just the pseudo inverse of *S , which is noted +S  here. 

 
Let us remind that the norm of any matrix K (which has not to be square) is defined by: 
 

( ) )(Max
1

2
1

2
KzKKz

z
K wtt =

=
=     (G6) 

 

where )(1 Kw  is the largest singular value of K. This singular value is simply the square root 

of the largest (positive) eigenvalue of the reduced information matrix )(1 SS t . One can show 

that: 
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So, it can be shown, using (G4), (G5) and (G7) that the maximum value of the amplification 
coefficient of the relative error kr, that is the criterion that assesses the ill-posed character of 
the OLS parameter estimation problem is equal to the condition number, noted cond (.)  here, 
of the reduced sensitivity matrix: 
 

1 ( )
( ) cond( )

( )
r

n

w
k

w
 =

S
ε S

S
    (G8) 

 
So, this condition number, defined here with the Euclidian L2 norm, is the pertinent criterion 
that can be used to measure the degree of ill-posedness of a linear parameter estimation 
problem, whatever the value of the noise level (for an i.i.d. noise). If the different parameters 
defining the parameter vector have not the same physical unit, the reduced sensitivity matrix 

*S , see Lecture L3, has to replace S  in the definition of the condition number. The condition 

number of *S  depends on the nominal values of the parameters and can vary strongly, 

depending on the value chosen for normalizing the parameters, even if the problem is linear. 
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Abstract: This tutorial is especially designed to the beginners in inverse heat conduction techniques. 

An estimation of a surface heat flux on a material will be done using embedded thermocouples. Through 

an experimental example, we propose to detail the heat flux estimation procedure associating 

deconvolution and regularization method (Tikhonov). After a brief presentation of the experimental 

context, the inversion procedure will be applied using an experimental signal generated during the 

tutorial. The codes used will be accessible to the participants. 

 

1. Introduction 
 

In many industrial applications or large research facilities, heat flux and temperature control 

are essential for a better understanding of the process and for the safety of the facilities. There 

are different possible temperature measurements: at the surface or using embedded sensors. The 

heat fluxes are generally deduced from these temperatures. On some setups, it is possible to 

measure temperature within the region of interest. But this is not always the case. In this 

workshop, we present a method that allows the estimation of heat flux and temperature using 

embedded measurements. 

 

We will focus on heat flux estimation based on embedded measurements using thermocouples. 

It is clear that a very small change in the measurement will lead to a large variation of the heat 

flux estimated. In other words, measurement errors are amplified and could make the results 

unusable. A solution to such an issue is to use a specific regularization method that would allow 

a better reliability of the solution. The best-known techniques include Thikonov's penalization 

regularization [Thikonov, 1977], and spectrum truncature regularization (SVD) [Hansen, 

1993]. To solve the inverse problems in heat conduction, many numerical techniques have been 

developed using different approaches, some analytical or semi-analytical, others based on 

classical numerical approximations, such as finite differences or finite elements. In this tutorial, 

a method based on the inversion of the Duhamel integral is used [Osizik, 1980], [Beck, 1985].  

 

This method extends the use of analytical solutions and solves multidimensional problems. The 

adjoint state method well described in [Jarny, 1990] can also be used to solve boundary 

condition estimation problems in complex geometries using the direct problem as an 

observation. However, the iteration process implementing a direct finite element calculation 

does not make it possible to perform a fast calculation. 

 

In a first part, a very simple direct problem is presented in order to explain the difference 

between a direct and an inverse procedure. Then, the convolution method allows writing a link 

between the temperature and the heat flux. The next section deals with the transfer function of 
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the experimental devices and the different ways to estimate them. Finally, the inversion process 

and the regularization method are described.  

 

2. Direct Problem, convolution 
  

2.1 Presentation of a simple direct problem 

 

Considering a 1D material with constant thermal properties ( = 240W/m.K, =1800kg/m3, 

Cp=780 J/kg.K, e=0.04m) submitted to a heat flux step of 1W/m2 between 5 and 10 seconds,  

we can compute the temperature at different depth values within the material (z=0, 1, 2, 3, 4 

cm) with a direct calculation (numerical simulations, thermal quadrupoles [Maillet et al., 2000], 

analytical solution,…). We assume that the initial temperature distribution in the material (at t 

= 0) is uniform and equal to T0. 

 

 

 
 

Figure 1. Heat flux applied to the surface of 

material with thickness e. 

Figure 2. Temperature rise at 

different thickness: z=0, z=0.01m, 

z=0.02m, z=0.03m, z=0.04m. 

 

Since the material is insulated, one can note that all the temperature rise is the same for all the 

sensors location from 15 sec. and is equal to: 

 

  

DT
stab

= T
stab

-T
0

=
E

rC
p
e

=
5´1

1800 ´ 780´ 0.04
= 8,903.10-5 K  (1) 

 

E is the energy per unit volume absorbed within the bulk in J/m3.   

 

A noise is added to the calculated values in order to simulate real temperature measurements 

as: 

 

Y = Ynum +  ε                                                              (2) 

 

Y is the noised signal of Ynum that is the exact temperature given by (2). 

 

ε is a Gaussian noise with zero mean and constant 10% standard deviation. Using the direct 

model leads to the temperature field when the thermal properties, the geometry and the heat 

flux are well known. Let us note however that, in the case of a complex geometry, a finite 

element method is generally used to obtain a field of temperature.  
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In this tutorial, we deal with the case when the heat flux is unknown and we have only one or 

several temperature measurement, not necessarily located on the region of interest. In this case, 

how can we obtain the heat flux on a boundary of the component? In the particular case 

presented on the Figure 1 and 2, the problem could be: how to estimate the heat flux deposited 

at the surface of the material using only the temperature measurement depending on time at 

1cm from the surface?  

 

2.2 Convolution procedure description [Carslaw-Jaeger, 1959] 

 

The component is modelled by a linear system subjected to a prescribed heat flux Q(z=0,t) 

having for effect the temperature T(z,t). Using the linear system, the temperature T(z,t) can be 

written as the convolution of Q(z=0,t) with the impulse response h(z,t) of the system, (i.e. the 

tile temperature response after a Dirac function of power applied to the surface). The 

temperature of the material is assumed to be uniform at t = 0.  

 

 

 
 

Figure 3. Linear System. Figure 4. Impulse response of the bulk. 

 

For the temperature T at the time t, the depth z: 

 

0

( , ) ( , 0) ( 0, ) ( , ) ( , 0) ( 0, ) ( , )
t

t
T z t T z t Q z t h z t T z t Q z h z t dt t t= = + = Ä = = + = -ò

 
(3) 

 

The impulse response h(z,t) of the system is the first time derivative of its step response u(z,t). 

So, we approximate (3) by finite differences which leads to the expression of the temperature 

at each time step F in matrix form: where X is a triangular lower square matrix (of order F) 

assembled with the components: 

 
( ,1) ( ,1) 0 0 ( 0,1)

( , 2) ( , 2) ( ,1) 0 ( 0,2)

( ,3) ( , 2) . . 0
 . 

.

.

( , ) ( , ) ( , 1) . ( ,1) ( 0, )

T z u z Q z

T z u z u z Q z

u z u z

T z F u z F u z F u z Q z F

D D =é ù é ù é ù
ê ú ê ú ê ú
D D D =

ê ú ê ú ê ú
ê ú ê ú ê úD D

=ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú
D D D - D =ë û ë û ë û

… … …

… … …

… …  

(4) 

 

with    

( , ) ( , ) ( , 1)u z F u z F u z FD = - -  
 

Finally, the heating vector ΔT is the multiplication of the X matrix with the heat flux vector Q: 

 

DT = X.Q  (5) 
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Since the X matrix is build with the transfer function of the component, this one has to be 

computed or measured.  

 

 

 

3. Determining the transfer function  
 

In this part, several ways to obtain the transfer function of the components are presented. For 

the case presented previously, an analytical transfer function can be computed using the thermal 

quadrupoles modelling [Maillet et al., 2000] because the geometry is perfectly known and 

relatively simple. In the case of a complex geometry, multidimensional, multi-materials, a 

numerical simulation can be used to compute the transfer function of the experimental device. 

An example is presented in subsection 3.2. Then, in a case of an experimental device 

complicated to model with a good level of accuracy (the thermal properties or the dimensions 

are note perfectly known, old experimental without map), the transfer function can be estimated 

experimentally directly on the device, using an appropriate methodology presented on the 

subsection 3.3.  

 

3.1 Analytical transfer function 

 

For a simple case, the thermal transfer function of an experimental device can be computed 

with the thermal quadrupoles method [Maillet et al., 2000]. With this method, the temperature 

and the heat flux at the surface of the material can be written respect to the heat flux and the 

temperature at the back face of the material, the thermal properties and the dimensions of the 

sample, in the Laplace space. Each layer of the material is represented with a 2x2 matrix 

containing the thermal properties and the thickness of the layer. For the particular case 

presented in the subsection 2.1, the transfer is mono dimensional and we want to compute the 

transfer function of the material at the thickness z (corresponding to a TC location) after a step 

of heat flux of 1 W/m2 imposed at z=0 (surface of the component). To obtain the step response 

at the thermocouple location z=e1, the material of width e is modelled by a bi-layer material of 

respectively e1 and e2 width: 

 

[
𝜃𝑖𝑛(0, 𝑝)
𝜙𝑖𝑛(0, 𝑝)

] = [
𝐴1 𝐵1
𝐶1 𝐷1

] [
𝜃𝑒1(𝑒1, 𝑝)

𝜙𝑒1(𝑒1, 𝑝)
] 

 

[
𝜃𝑒1(𝒆𝟏, 𝒑)

𝝓𝑒1(𝒆𝟏, 𝒑)
] = [

𝑨𝟐 𝑩𝟐

𝑪𝟐 𝑫𝟐
] [
𝜃𝑜𝑢𝑡(𝑒, 𝑝)
𝜙𝑜𝑢𝑡(𝑒, 𝑝)

] 

(6) 

 

With  𝐴𝑖 = 𝐷𝑖 = 𝑐𝑜𝑠ℎ(𝜎. 𝑒𝑖) 

 𝐵𝑖 =
1

𝜆𝜎
. 𝑠𝑖𝑛ℎ⁡(𝜎. 𝑒𝑖) 

 𝐶𝑖 = 𝜆𝜎. 𝑠𝑖𝑛ℎ⁡(𝜎. 𝑒𝑖) and 𝜎 = √
𝑝

𝑎
 

Since the material is supposed to be insulated in z=e, 𝜙𝑜𝑢𝑡(𝑒, 𝑝) = 0. Furthermore, the heat 

flux imposed at z=0 is a Heaviside function equal to 1W/m2, in the Laplace space, this function 

becomes: 𝜙𝑖𝑛(0, 𝑝) = 1/𝑝. 
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With theses assumptions, it is now possible to write in Laplace transform of the step response 

at z=e1: 

 

𝜃𝑒1(𝑒1, 𝑝) =
𝐴2

𝐶1𝐴2 + 𝐴1𝐶2
.
1

𝑝
 (7) 

 

A numerical inverse Laplace transform [DeHoog, 1982] allows computing this step response 

in the time domain.  

 

3.2 Transfer function computation with finite element method 

 

When the step response can’t be computed with this kind of simple modelling, it is also possible 

to compute it with a finite element method. In the next case, the experimental device is a 

pervaporation cell made of PVC matter [Toudji, 2017] with a low thermal conductivity of about 

0.16 W/m.K to limit heat exchanges with the external environment and with the liquid. The 

liquid is filled in a cylindrical tank above the pervaporative membrane surface. Several 

thermocouples are located in the fluid. The goal of this experimental device is to estimate the 

heat flux consumed on the membrane in z=0m, using the thermocouples data and the 

deconvolution method. As in the precedent case, the first problem is the identification of device 

transfer function. Since, the diffusive time of the ethanol is very important, in a first 

approximation, it is possible to use an analytical solution assuming the ethanol as a semi-infinite 

medium. In this case, the step response can be written as follow: 

 

𝑇(𝑧, 𝑡) − 𝑇(𝑧, 0) = 2.
𝑄

𝜆
√𝑎𝑡. 𝑖𝑒𝑟𝑓𝑐(

𝑧

√4𝑎𝑡
) (8) 

 

T(z,t) is the field of temperature depending on time and on the location z 

T(z,0) is the initial temperature of the device 

Q is the heat flux density (W/m2), equal to 1W/m2 for a step response. 

λ is the thermal conductivity (W/mK) 

a is the thermal diffusivity (m2/s) 

t is the time (s) 

 

The semi-infinite approximation can be useful for a short experience but this kind of 

experiments are interesting at long time, typically 2000s. It was essential to compute a step 

response taking into account the complex geometry of the experimental device. This 

computation has been done with StarCCM+. The mesh and the results are presented on the 

following figures for a negative heat flux of -200W/m2. Indeed, a first computation has been 

done with a value of heat flux density in order to see the order of magnitude of the cooling at 

the thermocouples locations. 
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Figure 5. Mesh of the pervaporation 

experimental cell 

Figure 6. Temperature field obtained with a 

negative heat flux of 200W/m2 

In a second time, the step responses have been computed at three TC locations with a heat flux 

of 1W/m2 imposed at z=0m. The computed step response are presented on the following figure: 

 

 
Figure 7. Step response function computed at three TC locations with numerical 

simulations and semi-infinite approximation 

 

One can see on this figure the comparison for each thermocouple of the numerical simulation 

and the semi-analytical one. We can see that the semi-infinite solution can be used until 500s, 

for a longer experiment, the numerical responses are essential.  

 

3.3 Transfer function identification 
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As said previously, the direct model is generally known, i.e., the thermal properties of the 

medium as well as the location of the sensors are accurately known. However, many practical 

configurations do not enter this ideal world and solving the inverse problem with great 

uncertainty on the direct one would lead to very inaccurate results. Therefore, as proposed in 

lecture L7, the transfer function that links the heat flux to the temperature at the sensors can be 

identified. In order to make a comprehensive application of the proposed methods in system 

identification, only one input (heat flux) and output (temperature measurement) will be 

considered. 

The first approach, know as the non-parametric one, will lead to estimate the transfer function 

from measured values of the heat flux and the sensor temperature within an experimental 

configuration where the heat flux can be monitored. The methods that will be used are the 

spectral technique based on the Welch algorithm. 

The second approach will consist in identifying the parameters involved within the expression 

of the transfer function. The first step will use the ARX technique that is faster but unfortunately 

biased since it is based on the minimization of the prediction error. The second method is based 

on the OE (output error) minimization technique that is a bit longer but unbiased. 

 

 

4. Deconvolution and regularization 
 

After the estimation of the transfer function of the experimental device studied, the matrix X 

can be built and the direct problem presented on the equation (5) can be easily solved. It is just 

a multiplication of the matrix X (built with the step response computed) with the heat flux 

vector. When the temperature vector is measured, the heat flux vector can be estimated using a 

specific methodology. The deconvolution procedure consists in reversing Eq.(5), i.e. expressing 

surface heat fluxes with measured surface heating as:  

 

Q = X-1 DT  (9) 

In the case of a surface temperature deconvolution (z = 0m), the problem is inverse but stable 

and matrix X inversion doesn’t cause any problem. In the case of the deconvolution of the 

temperature measured with an embedded thermocouple (z=e); the inverse problem is now 

unstable. A low variation of the measurement induces a big variation of the estimated heat flux. 

Indeed, the matrix X is ill conditioned. Clearly, it means that the matrix X is difficult to inverse 

because of very low terms in the diagonal. Consequently, a regularization procedure is needed 

to stabilize the solution.  

 

4.1 The Thikonov regularization 

 

The solution vector Q, is very sensitive to measurement errors contained in vector ΔT. In order 

to obtain a stable solution, we use a regularization procedure. For example, we can use the 

Thikonov regularization operator. The regularized solution becomes: 

 

Q̂reg =(X t
X + g R

t
R) -1

X
t DT

 
(10) 

  

- 𝑄̂𝑟𝑒𝑔⁡is the regularized solution (an approximation of Q)  
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-  is the regularization parameter  

- R is the regularization operator depending on the type of information that we want to obtain. 

 

In the specific case of heat flux estimation, we want a solution with a minimal norm of the 

solution (0 order) 𝑄̂𝑟𝑒𝑔 , so we will take R = Id.  An optimal value of the regularization 

parameter can be found using the “L curve” technique [Hansen, 1993]. This type of 

representation allows choosing the best compromise - which is located at the bending point of 

the ‘L-curve’ - between a stable solution, with a low value of ‖𝑅. 𝑄̂𝑟𝑒𝑔⁡‖ and an accurate 

solution, with low residuals ‖𝑋. 𝑄̂𝑟𝑒𝑔 −△ 𝑇⁡‖.  

 

4.2 Application to the case presented in the section 2.1 

 

For lower values of  (Figure 8), the solution is unstable with low residuals, on the other hand, 

for strong values of  (Figure 9), the solution is stable but moves away from the exact solution. 

The Figure 10 shows the heat flux estimated with the best compromise for . 

 

 
 

Figure 8. Heat flux estimation with a low  Figure 9. Heat flux estimation with a 

strong . 

 

On Figure 11 is presented an example of L curve with the best  for heat flux estimation with 

the embedded measurement. One can note that the value  depends on the level of the noise, 

the temporal resolution and the depth of the measurement.  
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Figure 10. Heat flux estimation with the best 

compromise of . 

Figure 11. L curve and best  in the case of an 

embedded thermocouple located at 3cm of the 

surface. 

 

4.3 Application to the case presented on section 3.2 

 

In this case, three similar experiments have been performed in laboratory with ethanol. The heat 

fluxes have been estimated using the step response presented on Figure 7 and the deconvolution 

and regularization procedure. On Figure 12, the heat fluxes have been estimated with the 

thermocouple located at 1mm from the surface for three different experiments. On Figure 13, 

this is the same experiment but the heat fluxes are estimated with the three thermocouples 

(z=1mm, z=8.6mm and z=16.2mm). In the two cases, the values of the heat fluxes are similar. 

First, one can note that the experiment is reproducible. On Figure 13, one can see that the heat 

flux estimated with the TC located at 8.6mm and 16.2mm are very smooth. This is because the 

depth of the thermocouple needs a higher value of the regularization parameter to obtain an 

exploitable solution. Nevertheless, the obtained values are very similar between the three 

thermocouples, proving the good level of accuracy of the step responses computed with 

STARCCM+.  

 

 
 

Figure 12. Heat flux estimation with the 

same thermocouple for three different 

experiences. 

Figure 13. Heat flux estimation for the same 

experiment with three different thermocouples. 

 

5. During the tutorial… 
 

We propose to apply the methods presented below considering experimental signals measured 

during the tutorial using a simple experiment. The principle of this experiment is to heat a 

sample with a lamp and to measure the temperature with thermocouples at several locations 

within the medium. The transfer function will be either derived analytically or identified. The 

measured signals will be recorded on a computer and the inverse problem will be solved using 

the deconvolution technique. All the codes are based on Octave GNU software.  
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Tutorial 9: Bayesian approach for inversion  
 

 
S. Demeyer1 

1 LNE, Laboratoire National de Métrologie et d’Essais, Département Science 
des Données et Incertitude 

 
E-mail:  severine.demeyer@lne.fr 
               
 
 
Abstract. The aim of this tutorial is to enable participants to apply Bayesian inversion 
algorithms to estimate thermal properties of walls (thermal resistance, thermal 
conductivity, areal heat capacity) and their associated uncertainty from surface 
measurements of the wall. The Bayesian inversion relies on the setting of prior 
distributions on the parameters of interest that are combined with the information gained 
from the measurements to provide the posterior distributions of the thermal parameters. 
Participants will experiment various prior settings and tuning parameter values as input 
parameters of a given Bayesian algorithm and see the effect on the convergence of the 
Bayesian algorithm and the posterior distributions. The required software is R with R 
Studio user inferface and a R notebook is provided during the tutorial in addition to this 
document.  

List of acronyms: 
 
 
MCMC: Markov Chain Monte Carlo 
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1. Introduction 
 

In the ANR RESBATI project1, a technical solution was developed to allow the in-situ estimation of the 
thermal resistance of walls with interior wall insulation (IWI) when the thermal resistance is less than 4 
m²K/W. A follow-up of this project ANR RESBIOBAT aims at investigating a solution for highly insulated 
walls and other types of sustainable walls composed of bio-sourced hygroscopic products. 
 
In the RESBATI project, the developed measuring device consisted of an active solicitation of the wall 
by a local constant heating, to measure its flux and temperature dynamic responses and then to 
determine its thermal resistance using identification methods (inverse modelling). 
 
The objective of this tutorial is to apply a Bayesian inversion procedure to measurement data collected 
during the ANR RESBATI project (inner surface temperature denoted TSI and absorbed flux 
measurements), adapted from [Demeyer, 2021], to estimate the thermal resistance of a multi-layer wall 
and its associated uncertainty. 
 

Due to the active method applied to produce measurements, thermal resistance cannot be inferred 
directly and requires the inversion (calibration) of a thermal model being able to produce temperatures 
as a function of conductivity and heat capacity of unit area (at least) based on observations. 
 
The thermal resistance of a multi-layer wall is given by the sum of the thermal resistance of each layer 

as 𝑅 = ∑
𝑙𝑖

𝑘𝑖

𝐼
𝑖=1  where 𝑘𝑖 and 𝑙𝑖 are respectively the thermal conductivity and thickness of layer 𝑖 and 𝐼 is 

the number of layers.  
 

 

 

 

  

                       
1 The RESBATI project was supported by ANR (Agence Nationale de la Recherche) the French National 

Research Agency under Grant agreement ANR-16-CE22-0010-02. 
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2. Description of the studied wall 
 

The following IWI wall is considered in this tutorial, for which measured or tabulated values of the thermal 
parameters of the constituents are displayed in Table 1. The results of the inversion will be compared 
with the theoretical or experimental values. 

 
 

Layer Thickness 

(m) 

Heat capacity 

of unit area 

cw / J/(K.m²) 

Thermal 

conductivity 

k / Wm-1K-1 

Thermal 

resistance 

R / m²KW-1 

Thermal 

resistance 

% 

Plasterboard 𝑒1 = 0.013 𝑐𝑤1

= 7.44 × 105 

𝑘1 = 0.250 𝑅1 = 0.052 1.2 

Insulation  𝑒2 = 0.12 𝑐𝑤2

= 3 × 104 

𝑘2 = 0.031 𝑅2 = 3.87 91.5 

Cinderblock 𝑒3 = 0.15 𝑐𝑤3

= 9.5 × 105 

𝑘3 = 0.580 𝑅3 = 0.258 6.1 

Exterior coating 𝑒4 = 0.015 𝑐𝑤4

= 1.30 × 106 

𝑘4 = 0.3 𝑅4 = 0.05 1.2 

    𝑅 = 4.23 100 
Table 1 Measured or tabulated values of the thermal performance of the constituents of the wall 
 

 

From Table 1, draw conclusions on the most influential layer 
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3. Exploration of the direct thermal model 
 

A 1D thermal model is considered. We assume that this simplified model, which does not depict 
transverse flows in the walls, is well adapted to IWI walls.  
 

3.1. Plot the output TSI curve obtained with the measured or tabulated values of the thermal 
parameters in Table 1 and the observed TSI. 

 
 

3.2. Observe the effect of departures from these values on the curve, for the parameters of your 
choice 
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4. Methodology for Bayesian inversion 
 

4.1. Inversion 
 
Among all the input quantities to a simulator used to represent a physical process, only a fraction of 
them are usually considered as the quantities of interest (the measurands), called calibration parameters 
in the inversion terminology, the others being considered as control or nuisance parameters. Some other 
inputs may be fixed to nominal values. 
 
In this tutorial, the calibration parameters of the thermal model representing the thermal response of the 
studied wall are the thermal parameters 𝜃 of the wall. The control parameters 𝑥 are observed variables 
that allow to reproduce numerically the experimental conditions that have produced the observations, 
see Figure 1. 
 
From the experimental values and the outputs generated by the thermal model, the aim of the 
identification technique is to find the values of the thermal parameters of the wall entered in the thermal 
model so that the outputs are as close as possible to the experimental values. 
 

 
 

 

 

 

 

 
 
 
 
Figure 1 Schema of a physical model used as a simulator and the quantities involved in the calibration 
of the simulator 
 
Recently, Bayesian inversion procedure has been applied to infer thermo-physical properties of building 
walls or envelopes from thermal physical models [Iglesias, 2018], [Thebault, 2018], [Demeyer, 2021]. 
 

4.2. Steps for a Bayesian inversion 
 
 

a) Choice of a statistical model for calibration 
 
A model assuming no discrepancy between observations 𝑦𝑖 and outputs of the thermal model 𝜂 for the 

observed conditions 𝑥𝑖 and calibration parameters 𝜃 writes 

 

𝑦i = 𝜂(𝑥𝑖 , 𝜃) + 𝜀𝑖 , 𝑖 = 1,… ,𝑁 

 

where 𝜀𝑖 is the measurement error, assumed to be independently normally distributed with standard 

deviation 𝑢𝑖 the reported measurement uncertainty 

𝜀i ∼ 𝑁(0, 𝑢𝑖) 
 

The previous model can be extended to take into account potentially underestimated reported 

uncertainties 𝑢𝑖 by introducing an adjustment factor 𝜎 > 0 (the Birge ratio of the model) 

 

thermal model  
simulator 

𝜃, calibration parameters 
(conductivity, areal heat 

capacity,…) 

𝑥, control parameters 
(time, conditions,…) 

𝜂(𝑥, 𝜃), scalar 
output 

(temperature) 

𝑦(𝑥), scalar 
observation 

(temperature) 
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𝑦i = 𝜂(𝑥𝑖 , 𝜃) + 𝜎𝜀𝑖 , 𝑖 = 1,… ,𝑁 

Assuming that 𝜎2 ∼ 𝐼𝑛𝑣𝐶ℎ𝑖2(𝜈0, 𝑠0
2), the marginal distribution of the observations integrated out 𝜎2 is 

multivariate t-distributed 

𝑦 ∼ 𝑡𝜈0(𝜂(𝑥, 𝜃), 𝑠0
2Σ𝜀) 

 

where 𝑥 = (𝑥1, … , 𝑥𝑁) and  Σ𝜀 = 𝑑𝑖𝑎𝑔(𝑢1
2, … , 𝑢𝑁

2 ) 

 

Bayesian inversion [Kennedy,2001], [Higdon, 2004], provides the posterior distribution denoted 
𝜋(𝜃|𝑦, 𝑥) of the calibration parameters 𝜃 given observations 𝑦, control parameters 𝑥 and a prior 
distribution 𝜋(𝜃).  
 

 

b) Choice of prior distributions 
 
The potential ranges for the thermal parameters of each layer are given in Table 2 and uniform 

distributions are chosen as prior distributions. 

 

Layer Heat capacity of unit area 

cw / J/(K.m²) 

Thermal conductivity 

k / Wm-1K-1 

Plasterboard 1 × 105 ≤ 𝑐𝑤1 ≤ 1.5 × 106 0.2 ≤ 𝑘1 ≤ 0.8 

Insulation  2 × 104 ≤ 𝑐𝑤2 ≤ 2 × 105 0.02 ≤ 𝑘2 ≤ 0.06 

Cinderblock 6.5 × 105 ≤ 𝑐𝑤3 ≤ 2.5 × 106 0.1 ≤ 𝑘3 ≤ 2.3 

Exterior coating 5 × 105 ≤ 𝑐𝑤4 ≤ 2 × 106 0.1 ≤ 𝑘4 ≤ 1.8 

 

Table 2 Potential values for thermal parameters of the insulation layer 
 
 

c) Choice of a MCMC algorithm  
 
The Metropolis-Hastings [Chib, 1995] algorithm (see Appendix B) is implemented in the function MH 

which performs the MCMC simulations in the posterior distribution of θ    

 
MH<- function(n_sim,pars.init,scale,par_names) 

 

n_sim number of MCMC simulations 

pars.init initial value 𝜃(0) 

scale variance covariance matrix of the multivariate proposal distribution N(θ^((c) ),Σ) 

 
Additional functions: 
 

addMHsimulations adds MCMC samples to a previously generated samples from the stationary 

distribution 

traceMH plots the MCMC simulations 

histMH plots the histogram of the MCMC simulations  

post_trait computes the posterior mean and standard deviation of the thermal resistance and plots 

the posterior density of the thermal resistance 
 

MH function returns MCMC samples (also called chain) and the acceptance rate. 
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d) Analysis of posterior samples from the Markov chains 
 
- autocorrelation function of the chains 
- traceplots 
- density plots  
- burn-in, thinning,… 

 
Comment the traceplots 

 

 
 
 
 
 
 
 

 
e) Convergence diagnostics 
 
Convergence diagnostics tools are usually employed to check the stationarity of the Markov chain. A 
review of convergence diagnostics for MCMC is given in [Roy, 2020], among which we will focus on the 
effective sample size and the Gelman-Rubin diagnostic. In brief, the effective sample size gives the 
number of independent samples equivalent to a set of correlated Markov chain samples and the output 
of the Gelman-Rubin diagnostic is the so-called potential scale reduction factor which should be close 
to 1 and is computed from at least two chains ran with overdispersed starting points w.r.t. the posterior 
distribution. 

 
f) Summary graph 
 

Complete the plot of Section 3.1 with 𝜂(𝜃𝑝𝑜𝑠𝑡) where  𝜃𝑝𝑜𝑠𝑡 is the vector of the posterior means  
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Comment 
 

 
 
 
 
 
 
 
 

 
 

 
 

f) Conclusion 
 

For this problem, the traceplot of some of the chains is typical of non identifiability, meaning that various 
combinations of values of these parameters can yield to the same likelihood of the data. 
 
However, the identified parameters allow to reproduce the observed TSI curve. 
 
Indeed, only the global thermal resistance is identifiable with the experimental setting, not the thermal 
resistance of the individual constituents. 
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5. Estimation of the thermal resistance of the wall 
 

After discarding the burn-in period and applying thinning to the chains, plot the posterior density of the 
thermal resistance. Compare with the theoretical R value.  
 

 
From the resulting posterior simulations, give posterior estimates  
 
 
R_posterior =………………………….    u(R_posterior)=……………………………    
 
relative uncertainty = (u/R)= …………………………… 
 
 

 

Conclusion 
 
 
 
 
 
 
 
 
 
 
 
  

207/339



 

 

 

 

METTI 8 Advanced School   Ile d’Oléron, France 

Thermal Measurements and Inverse Techniques             Sept. 24th – Sept 29th, 2023 
 

 Tutorial 9: Bayesian approach for inversion – page 10 
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Appendix 

 

A) Inverse chi-squared distribution for 𝜎2 

 

 

 
Figure 2 Plots of the density of the inverse chi-squared distribution with 𝜈0 degrees of freedom and 

scale parameter 𝑠0
2 for various combinations of these values. 

 

 

B) Metropolis-Hastings algorithm 
 

Input: observations (𝑦1, … , 𝑦𝑁) 

Output: 𝑀 samples from marginal posterior distribution 𝜋(𝜃|𝑦, 𝑥) 

1: initialize: 𝜃(1), 𝜂(𝑥, 𝜃1) 

2: compute 𝑎 = ln⁡(𝜋(𝜃(1))𝑙𝑖𝑛𝑡(𝜃
(1)|𝑦, 𝑥)) 

3: repeat 

4: 𝑙 ← 𝑙 + 1⁡; 

5: sample 𝜃(𝑐) ∼ 𝑁(𝜃(𝑙−1), Σ) 

6: compute 𝜂(𝑐) = 𝜂(𝑥, 𝜃(𝑐))⁡ 

7: compute 𝑏 = ln⁡(𝜋(𝜃(𝑐))𝑙𝑖𝑛𝑡(𝜃
(𝑐)|𝑦, 𝑥)) 

8: let 𝛼 = min(exp(𝑏 − 𝑎) , 1)⁡ and 𝑢 ∼ 𝑈𝑛𝑖𝑓(0,1) 

9: if 𝛼 ≥ 𝑢 then 𝜃(𝑙) = 𝜃(𝑐) 

10: else 𝜃(𝑙) = 𝜃(𝑙−1) 

11: 𝑎 ← 𝑏 

12: until 𝑙 = 𝑀 
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Tutorial 10: Thermomechanical inversion 
 

 
J.G. BAUZIN, M.N. NGUYEN, N. LARAQI 
 

LTIE, Université Paris Nanterre, 92410 Ville d’Avray – France 
 
E-mail:  jbauzin@parisnanterre.fr 
                   paulminhnhat.nguyen@gmail.com 
              nlaraqi@parisnanterre.fr 
 
Abstract. The aim of this tutorial is to present an inverse thermomechanical 
methodology. By means of an analytical approach, we establish a thermoelastic 
mechanical transfer function between the temperature of a heated surface and the 
mechanical distortion of a solid at a given abscissa far from the surface. Subsequently, 
we measure the distortion at discrete time intervals using strain gauge and we apply a 
deconvolution product for those measurements to identify the temperature of the heated 
surface. By this way, it is no longer necessary to know the temperature field to solve the 
thermomechanical problem of our experimental device. We demonstrate that the 
inversion procedure can be applied successfully even in situations where the measured 
signal is affected by noise, through using the Tikhonov regularization method. Lastly, 
the surface temperature identified from the deformation measurements is compared to 
a temperature measurement. 

List of acronyms: 
 

• NLPE: Non-Linear Parameter Estimation 

• PEP: Parameter Estimation Problem 

• SVD: Singular Value Decomposition 

• IHCP Inverse Heat conduction Problem 

• OLS: Ordinary Least Squares
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1. Introduction 

In most mechanical experiments, we find that temperature plays a major role in the 
behavior of the system under study. Mechanical constraints, and thus, the displacements 
resulting from mechanical distortions, do depend on the temperature field present in the 
system. This is particularly relevant in the case of thermal surface treatment processes that 
are applied to manufactured objects.  

In the context of heat transfer studies, the problem of estimating boundary conditions, 
such as the heat flux flowing thru the surface, or such as the temperature at the surface, have 
been the subject of many studies in the literature [1]–[3]. By reviewing the studies related to 
the IHCP problem, we observe that temperature measurements are being used in almost every 
case. Experimentally, it is found that determining the evolution of temperatures at certain points 
of the device is essential to solve the IHCP. Sensitivity analysis makes it possible to analyze 
and optimize the position of temperature sensors in order to ensure the feasibility of the 
resolution. However, some studies approach the thermomechanical inverse problem. Wang et 
al. [4]conducted an experiment to measure temperatures inside solid devices by means of 
thermocouples, and based on the obtained measurements, they performed a thermal inverse 
study by the Conjugate Gradient method.  As indicated in many studies trying to solve the 
Inverse Problem [5], [6], sensitivity analysis shows that the location of the thermocouples 
should be as close as possible to the heated surface. Then, using the experimental data from 
Wang et al. [4], Chen and Wu [7] had proposed a hybrid technique based on Laplace 
Transform and on the Finite Difference method, to estimate the temperature of the laser-
heated surface. Lee and Huang [8] developed an integral-transform-free methodology for one-
dimensional IHCP with time-dependent boundary conditions to estimate the heat flux of the 
same problem. They approximated the unknown surface temperature using a fourth-degree 
polynomial function in order to reduce the number of unknowns of the IHCP. 

So, it would be interesting to solve the IHCP from mechanical measurements only 
(displacement measurement) without requiring any temperature sensor. But this novel 
approach requires to solve a coupled thermoelastic problem.  In the literature, only a few 
investigations [9]–[13] were able to predict the unknown boundary condition on the heated 
surface via using only displacement sensors. Blanc and Raynaud [10] solved the IHCP by 
using the thermal strain and temperature measurements instead of the temperature 
measurements only. Taler and Zborowski [11] used the discrete form of Duhamel’s integral 
and future time steps, in order to control the thermal stress in elements of complex shapes. 
Chen et al. [12] applied a hybrid numerical algorithm of the Laplace transform technique, the 
finite-difference method with a sequential-in-time concept, and the least-squares scheme, so 
as to estimate the surface heat flux from the theory of dynamic thermal stresses. Recently, Tu 
[13] developed a strain gauge measurement method to measure the thermal strain and 
performed the thermal inverse analysis of the laser heating process. Bauzin et al proposed a 
thermoelastic mechanical and heat conduction study through inverse method and transfer 
functions [14]. 

Solving the inverse problem in heat transfer through transfer functions has been the 
subject of several works in the literature. Fernandes et al. [15] solve the IHCP 
(multidimensional problem) by identifying the analytical transfer function by means of Green’s 
functions. Al Hadad et al. [16] performed an experimental transfer function identification for the 
thermal impedance and transmittance in a channel heated by an upstream unsteady 
volumetric heat source. 
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In this study, we develop a thermoelastic transfer function between the temperature of a 
heated surface and the mechanical distortion of a solid at a given abscissa far from the surface. 
This analytical model is validated by comparison with a numerical one. In a first hand, the 
identification of the linear coefficient of thermal expansion is performed from measurements of 
temperatures and mechanical distortion. 

  

2. Analytical approach 
 

2.1 Thermoelastic transfer function 
 
To serve as a model for our study, we consider a thin cylinder with constant cross section, 
made of a material that is both homogeneous and isotropic (Fig. 1). The cylinder is heated on 
its surface at the point of abscissa 0x =  and it is fixed at its other end, at x = L.  We measure 

the displacement of the rod particles in a point located at abscissa x. In order to solve the 
thermoelastic problem associated to this model, we assume that no radial nor circumferential 
expansion occurs. Furthermore, we assume that the particles of the rod will undergo only slow 
motion, so that the cylinder behaves according to the longitudinal free vibration of a rod model. 
The large length-to-diameter ratio of the cylinder will be taken into account to ensure the one-
dimensional nature of the thermoelastic problem. Under those assumptions, and as it is 

presented by Tu in [13], the equation for the displacement ( ),u x t  could be written as follows 

[14], [17]: 
 2 2

02 2 2

0

1
,  0   ,  0

u u T
k x L t

x c t x

  
− =   
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where the parameters k0 and c0 are defined as 
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−
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In addition, the relationship between the stress ( ),x t , the displacement ( ),u x t , and the 

temperature ( ),T x t can be generated from the one-dimensional Duhamel-Neumann equation 

in terms of the shear modulus G, the Poisson’s ratio  , and the linear coefficient of thermal 

expansion 
t  as: 

 
( ) ( )

( )
( ) ( )

,2
, 1 1 ,

1 2
t

u x tG
x t T x t

x
   



  
= − − + 

−  
  (3) 

Using the boundary condition ( )0, 0t =  on the heated surface, we can write: 

 ( )
( )0 0

0,u t
k T t

x


=


  (4) 

Because we assume a constant surrounding temperature 
ambT in the experimental process, the 

temperature function ( ),T x t  and ( )0T t  are defined as the rise of temperature above the 

ambient temperature 
ambT . Moreover, the cylinder is fixed at the unheated end ( x L= ), the 

other boundary condition is: 
 ( ), 0u L t =   (5) 

The cylinder is initially at rest, the initial conditions are thus: 
 

( ),0 0u x = , 
( ),0

0
u x

t


=


  (6) 
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Figure 1 : Schematic diagram of the problem with a displacement sensor. 
 
We recall that the Laplace transform of a function f  is defined as follows: 
 

( ) ( )  ( )
0

, , ptF x L f t x f t x e dt



−= =    (7) 

Where: L is the Laplace operator, p the Laplace variable. The inverse Laplace transform, given 
by equation (8), can be used to obtain back function f from its Laplace-transformed form. In 
this study, in order to compute the inverse Laplace transform if the expression is not explicit, 
a numerical Euler procedure [18] is used. 
 ( ) ( ) 1,f x t L F x−=   (8) 

The Laplace transform is applied to the displacement: ( ) ,U L u x t= . The equations (1), (5) 

and (6) become: 
 2 2

02 2

0

U p T
U k

x c x

 
− =

 
  (9) 

 
( ) 0 0

0

0 ;
x

U
U L k T

x
=

 
= = 

 
  (10) 

In order to take into account the heat, a time-dependent temperature function ( )0T t  is imposed 

on the surface ( 0x = ) at the end of the cylinder (Eq. (10)). This function will be unknown and 

needs to be identified. Moreover, in order to solve the mechanical problem of the equation (9)

, it is necessary to know the expression of the Laplace transform of the temperature T  in the 
solid. The cylinder is insulated along the longitudinal direction, resulting in the surface of the 
unheated end to be considered as a zero temperature gradient. Furthermore, the large length-
to-diameter ratio of the cylinder permits us to assume one-dimensional heat conduction. The 
governing partial differential equation, and the boundary and initial conditions of the heat 
conduction system are thus: 
 2

2

1
,  0   ,  0

T T
x L t

x t

 
=   

 
  (11) 

 ( ) ( )00,T t T t=   (12) 

 
0,  ,  0

T
x L t

x


= = 


  (13) 

 ( ),0 0, 0 , 0T x x L t=   =   (14) 

0u =   

0 =   

Deformation sensor 

x  x  

( )0

0

T t

x =
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The Laplace transform is this time applied to the temperature variable, within equations (11)-
(14) and the solution of this system of equations in the Laplace space can be written in the 
following form: 
 

( )
( )

( )
0

ch q L x
T x T

ch qL

 −  
=   (15) 

with 
p

q


= , and for the heat flux: 

 
( )

( )

( )
0

sh q L x
x q T

ch qL
 

 −  
= −   (16) 

By replacing the expression of the temperature in the transformed equations (9) and (10), it 
comes: 
 ( )

( )

2 2

0 02 2

0

sh q L xU p
U k q T

x c ch qL

 −   
− = −


  (17) 

 
( ) 0 0

0

0 ;
x

U
U L k T

x
=

 
= = 

 
  (18) 

For a fixed x, the relationship between the displacement and the temperature is written as: 
 ( ) ( ) 0uU x G x T=    (19) 

The thermomelastic transfer function ( )G x is: 

 
( )

( )
( )( )

( )

( )( )
( )

0

2

- -
-

1-
u

sh q L x sh q L xk
G x

ch qL ch qLq






 
=  

 
 

  (20) 

With 
0

q

c


 =   

Similarly, it is possible to calculate the displacement at a given abscissa x in the solid from the 

knowledge of the temperature  ( )  ( , )T x L T x t=  at this position by the following relation: 

 ( ) ( ) ( )uU x M x T x=    (21) 

with: 
 

( )
( )

( )( )
( )

( )( )
( )

( )

( )( )
0

2

- -
-

-1-
u

sh q L x sh q L x ch qLk
M x

ch qL ch qL ch q L xq






 
=  

 
 

  (22) 

The inverse Laplace transform of the transfer function ( )G x  is the impulse response of the 

problem (equation (23)): 
 ( ) ( ) 1, ug x t L G x−=   (23) 

 
The deformation   is related to the displacement u  by the following relation (in the Laplace 

space): 
 

( )
( ),

,
U x p

x p
x




=


  (24) 

 

So it comes by deriving the expression ( )U x  from with respect to x: 
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( )

( )
( )( )
( )

( )( )
( )

20
02

- -
,

1-

ch q L x ch q L xk
x p T

ch qL ch qL


 



 
= −  

 
 

  (25) 

The transfer function for de distortion is: 
 

( )
( )

( )( )
( )

( )( )
( )

20

2

- -
,

1-

ch q L x ch q L xk
G x p

ch qL ch qL






 
= − 

 
 

 

( ) ( ) 0, ,x p G x p T =   

 (26) 

In order to return into the temporal space and calculate the impulse response, a numerical 
inversion is used (Euler procedure [21]). Indeed, in this general case, the expression of 

( ),g x t  the inverse Laplace transformation ( ),G x p is not explicit.  

 
2.2 Simplification of the transfer function 

 

If we neglect the vibratory part of the mechanical equation (  very small), it comes: 

 
( )

( )( )
( )

0 0

-
,

ch q L x
x p k T

ch qL


 
=  

 
 

 

( ) ( ) 0, ,sx p G x p T =   

 (27) 

With 

 
( )

( )( )
( )

0

-
,s

ch q L x
G x p k

ch qL

 
=  

 
 

  (28) 

By replacing hyperbolic cosines with their exponential expressions, the deformation is written: 
 

( )
( ) ( )

0 0,
q L x q L x

qL qL

e e
x p k T

e e


− − −

−

+
=

+
  (29) 

Either 
 

( )
(2 )

0 02
,

1

qx q L x

qL

e e
x p k T

e


− − −

−

+
=

+
  (30) 

And the serial development of the exponential is written: 
 

( ) 2

2
0

1
1

1

n nqL

qL
n

e
e


−

−
=

= −
+

   (31) 

Which gives the expression of the Laplace transformation distortion : 
 

( ) ( ) ( ) ( )( )( )2 12

0 0

0

, 1
n q L n xq nL x

n

x p k e e T


− + −− +

=

= − +    (32) 

The reverse Laplace transformation of 
qXe− is known:  

 

 
2

1 4

32

X

qX t
X

L e e
t





−

− − =   (33) 
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The explicit expression in this case simplified for the deformation is written: 
 

( ) ( )
( ) ( ) ( )( ) ( )( )

( )

22
2 12

4 4
0 0

3 3
0

2 12
, 1

2 2

L n xnL x
n

t t

n

L n xnL x
x t k e e T t

t t

 
 

− + −− +

=

 + −+
 = − + 
 
 

   (34) 

The simplified impulse response is: 
 

( ) ( )
( ) ( ) ( )( ) ( )( )

22
2 12

4 4
0

3 3
0

2 12
, 1

2 2

L n xnL x
n

t t
s

n

L n xnL x
g x t k e e

t t

 

 

− + −− +

=

 + −+
 = − +
 
 

   (35) 

For the rest of the study, the hypothesis that ( ) ( ), ,sg x t g x t=  will be made. 

2.3 Impulse response 

The inverse Laplace transform of the transfer function ( )SG x  is the impulse response of the 

problem (equation (35)). An example of the impulse response for the displacement is 
presented in Figure 2.on a Cartesian scale and on a semi logarithmic scale for different 
abscissae in the solid. 
 ( ) ( ) 1,g x t L G x−=   (36) 

 

  

Figure 2 : Impulse response for different positions x for AA1100. 
 

These impulse responses are calculated with the thermo-physical properties of AA1100 
aluminum alloy. The thermo-physical properties and material properties of the AA1100 
aluminum alloy are:  

32710kg m −=  , 1 1222W m K − −=   , 1 1904pC J kg K− −=  , 10 22.69 10G N m−=   , 0.3 = , and 

6 123 10 Kt
− −=  . The length L of the sample cylinder is 10 cm. 
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2.4 Response calculation of displacements by means of the convolution product 

It is shown that the output could be calculated by the convolution product [16], [19], [20] 

between the input (excitation or cause) ( )0T t  and a corresponding thermoelastic transfer 

function ( ),g x t  (impulse response of the system given by equation (23)): 

 ( ) ( ) ( )0, ,x t g x t T t =    (37) 

where   denotes the convolution product. For any input ( )0T t the output ( ),x t  is given by the 

convolution integral, as expressed in Eq. (38) represented in terms of Temperature (input) and 
deformation (response) [15]. Thus, we have: 
 

( ) ( ) ( )0

0

, ,

t

x t g x t T d   = −   (38) 

Parameterization of the excitation ( )0T t , over a base of piecewise constant functions defined 

on a constant time step t   allows to exhibit a sampling ( ),k kx t = of the response. The 

convolution product can then be expressed in the following matrix form [16]: 
 CT =   (39) 

where: 
 

1 1 1

1

1 1 1

2 2 1 2

2

2 1

0 0

, ,

0
f f f

f f f f

N N N

N N N N

g T

g g T

gC T

g T

g g g g T











− − −

−

     
     
     
     = = =
     
     
     
          

  (40) 

with: 
 

( )
1

,
i

i

t

i

t

g g x t dt

−

=    (41) 

C  is a square matrix of size 
f fN N  where each element 

ig is given by equation (41) . It is 

important to note that equation (39) is valid, it is necessary that the time step be small enough 

with respect to the characteristic times of the input ( )0T t  and transfer function ( ),g x t . In a first 

approach, the temporal discretization being sufficiently fine, the hypothesis of a linear variation 
on the time step t  can be made and it comes:  

 ( ) ( )
( )1

1

, ,

2

i i

i i i

g x t g x t
g t t

−

−

 + 
= − 
 

  (42) 

2.5 Validation of the analytical solution with numerical simulations 

The analytical solution developed is compared to a numerical solution computed by finite 
element software. The mesh resolution chosen is sufficiently fine to ensure that discretization 

has no significant impact on the results. The applied temperature ( )0T t  on the surface in 

0x m= is a door function (Figure 3). The temporal deformation calculated by a numerical 

method (finite elements) is compared in Figure 3 to the deformation values resulting from our 
analytical approach using the convolution product presented previously. 
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Figure 3 : Input surface temperature and comparison of the numerical solution (FEM) 

 with analytical method for the deformation in 0.01x m=  

 

It can be seen that the analytical solution and the numerical solution give very similar results. 
The analytical approach is thus validated. Consequently, the proposed analytical approach 
can also be used in a reverse approach to identify the surface temperature from the 
measurement of deformation. 

 
2. Experimental device  

 

The experimental setup consists of a steel bar, heated at its end by a heating element. On the 
other side, the bar is fixed in a clamp, the displacement is zero. Temperature measurement is 
performed (in) different positions by type K thermocouples directly welded to the material 
(Figure 4 (a)).  A strain gauge is fixed to the bar to measure the deformation (Figure 4 (a)). 
The positions of the sensors are measured by image analysis. The solid is isolated to be placed 
in similar conditions (in) the model presented (Figure 4 (b)). 
 

 
(a) 

 
(b) 

Figure 4 : Experimental device 
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The temperature of the strain gauge is closed to the sample one. Then, the sensor also 
expands according to the temperature evolution. Therefore, the measurement represents the 
differential of deformation between the sensor and the solid: 
 

mes steel sensor  = −   (43) 

Taking a relative expansion coefficient in the analytical model, we represent the experimental 
measurements: 
 

T mes T steel T sensor  = −   (44) 

If the expansion coefficient of the steel of the bar is lower than that of the strain gauge 
coefficient, then a negative deformation will be measured (the gauge being in compression). 

The thermal properties of the steel are: 38000kg m −=  , 1 141.7W m K − −=   , 
1 1474.6pC J kg K− −=  . The expansion coefficient of the sensor is given by the manufacturer 

and is 6 111.7 10T sensor K − −=  . 

 
Examples of measurements for the temperatures and the deformation are presented in Figure 
5. The positions of the strain gauge from the imposed temperature position is 17.83mm. The 
temperature evolutions are defined as the rise of temperature, above the ambient temperature 
(or initial temperature). 

 
Figure 5 : Experimental measurements (temperature and deformation).  

 
The linear coefficient of thermal expansion will be estimated in part 3. The experimental bench 
and the analytical model do not take into account the same radial mechanical boundary 
conditions. Then, the Poisson’s ratio is fixed to zero. in this case, the deformations of the 
analytical model (taking into account an imposed zero radial displacement) and the 
deformations calculated by a numerical model with free radial displacement are similar (Figure 
6) 
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Figure 6 : Comparison of the deformation between  

the analytical solution (imposed radial displacement and 
 a numerical solution (with representative experimental boundary condition).  

 
 

3. Identification of the linear coefficient of thermal expansion 
 

In order to identify the linear coefficient of thermal expansion T ( PEP), we use a method of 

minimisation criterion (OLS) which is represented by the functional NF , such: 

 

( )
2

1

j N

jN j

j

F  
=

=

= −    (45) 

For each time step j (i.e. time jt ), the calculated temperature j  by the direct model is 

compared to the measured temperature j . The minimization procedure of NF with respect to 

the unknown linear coefficient of thermal expansion consists to solve the equation: 

 

( )
1

0
j N

j
jj

j T


 



=

=


− =


    (46) 

The system is non-linear (NLPE) but does not pose any problem of resolution. It is solved 
by an algorithm of Levenberg Marquardt [21], [22]. The identified value is 

7 1ˆ 7.58 10T mes K − −= −  . Then the estimated value of the material is 6 110.94 10T steel K − −=   

which is in agreement with the values that can be found in the literature. The comparison of 
the strain gauge measurement and the calculated deformation with the identified value is 
presented in Figure 7.  
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Figure 7 : Measurement, calculation with the identified  T and residues of the deformation 

 
4. Identification of the surface temperature from deformation 

 

4.1 Identification Procedure 
 

For any dynamic system, the relation between input and output in the complex variable p 
domain is given by the multiplication expressed in Eq. (19) or in the time domain by the 
convolution (Eq. (37)). Thus, in terms of the temperature/deformation we can write the 
deconvolution product: 
 

( )
( )

( )0

1
,

,
T t x t

g x t
=    (47) 

Therefore, observing Eq.(47), it results that an inversion occurred between the input/output 

pair. The solution of this problem is the surface temperature ( )0T t , the input being the 

deformation. The new transfer function of this system is ( )1 ,g x t . By discretizing the linear 

problem on a constant time step t , according to equation (8) the matrix system becomes: 

 1T̂ C −=   (48) 

In order to invert the system, a singular value decomposition of the matrix C  is carried out: 

 TC UDV=   (49) 

with: 
 T T T T

NfU U UU VV V V I= = = =  

( )1 2, , , NfD diag D D D=  where 1 2 NfD D D     
 (50) 

Equation (48) is then written in the following form: 
 1ˆ TT V D U u−=    (51) 

with: 
 ( )1 1 1 1

1 2, , ,  NfD diag D D D− − − −=   (52) 

According to equation (47), it is then possible to calculate the temporal evolution of the surface 

temperature ( )0T t  (which we will name “identified surface temperature” in the sequel of this 
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article) from the knowledge of the deformation at a certain depth and the thermomechanical 
characteristics of the material. This identification of the surface temperature from the 
deformation data will be validated on experimental case. 
 

4.2 Sensitivity analysis to the known parameters 
 

It is important to present how the performance of the reconstruction of the surface temperature 
can be biased when some confidence bounds of the parameters are considered. The length 
of the cylinder L has no impact on the deformation calculation until the heat front has reached 
the end of the specimen. Similarly, an error in this parameter would have very little impact on 
the result. For the configuration presented and for the numerical values used in this study, the 
shear modulus does not affect significantly the calculation on the deformation. For the other 
physical parameters, Figure 8 presents the error made on the identification of the surface 

temperature with regard to the error made on each parameter ( , ,T   ). The calculation is 

performed from perfect deformation data, without noise.  

 
Figure 8 : Impact of the error of the known parameters  

on the estimation of the surface temperature. 

The imposed surface temperature is constant 0T . The error on the estimated temperature is 

( )0 0 0T̂ T T− . It can be seen that the sensitivities of the model to the thermal and mechanical 

characteristics are in the same order of magnitude. The calculation has been performed with 
the numerical values given in section 2.3. Thus, from the knowledge of the accuracy of the 
thermomechanical characteristics, it is possible to predict the error made in the estimation of 
the surface temperature. We can notice that if the characteristics are perfectly known, we find 
perfectly the input temperature. In addition, identification from a noised data representative of 
a real measurements cannot be carried out without regularization of the problem (cf. part 4.3) 
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4.3 Regularized identification of the surface temperature 
 

So far, we have achieved that the estimation procedure using the deconvolution product 
can be used without prior knowledge of the form of the surface temperature function. In the 
previous examples, the signals being used were interpolated curves (i.e. signal was not 
affected by noise). However, the use of a noisy deformation signal in the procedure causes 
instability in the inversion of the system of equations (51). It is therefore essential to regularize 
the procedure. Indeed, the matrix to be inverted is ill-conditioned: the ratio of the largest to the 
smallest singular value is large. In the literature two techniques are proposed to treat this 
undesirable situation: either by filtering the noise or by regularizing the matrix to be inverted, 
so as to make it well-conditioned [23]. It is usually preferable to use the matrix regularization 
approach. Hence, in this work, we will regularize the matrix to be inverted, in order to get a 
stable identification. We present in this study the Tikhonov regularization method [24], [25]. 

The estimation of parameters is performed by minimizing the square of the norm of the 

difference between measured and calculated deformations. The functional ( )F T  of the least-

squares method is given by the following equation: 
 ( )

2 2
+ mesF T CT u T= −   (53) 

Where   is the Tikhonov regularization parameter which varies from 0 to ∞. If 0 = , this 

corresponds to the case without regularization. The Tikhonov estimate can be given an inverse 
SVD-like form: 
 1ˆ TT V D U u 

−=    (54) 

with : 
 

1 1 2

2 2 2 2 2 2

1 2

, , ,  
Nf

Nf

DD D
D diag

D D D


  

−
 

=  
 + + + 

  (55) 

The choice of the regularization parameter is important. If the standard deviation of the 

measurement noise m  is known, the optimal hyper-parameter ( )DP  value can be found by 

Morozov’s discrepancy principle. The regularization hyper-parameter value can be set 
according to Morozov’s discrepancy principle as the value which proscribes the inversion 
process to go beyond a minimization making residuals lower than the measurement noise [23]. 
This can be expressed as: 

 
mRMSR   

( )
2

1

1

fi N

rec

i i

i

f

u u

RMSR
N

=

=

−

=
−


  

 (56) 

RMSR is the Root Mean Square Residual, 
m is the standard deviation of the noise and 

rec

iu

the deformation signal recalculated using estimation approach. In the rest of this study, we will 
take the numerical cases studied previously by noisily randomizing the data. 
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4.4 Numerical case 
 
The deformation is simulated from the door temperature imposed on the surface.  The data 

are now corrupted by noise, such as ( ) ( )
exact

t t e = +  . e  is a uniformly distributed random 

number with 
max maxe e e−   . The standard deviation is 

7

m 1.116 10 m
−

= , which is 

representative of the experimental noise. Figure 9 shows this randomly noisy deformation that 
will be used for the identification of the door function of temperature that has been imposed in 
part 2.5. 

 
 

Figure 9 : Noised relative deformation in  0.01x m= . 

 

If the inversion procedure based on a deconvolution product is not regularized, then we obtain 
an unstable, divergent system. A Tikhonov regularization is applied. Figure 10 presents the 

evolution of RMSR as a function of the hyper-parameter. The equality mRMSR =  is calculated 

by using the function fsolve in Matlab. The optimum hyper-parameter for the inversion 

procedure is 83.8782 10optim −=  . 
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Figure 10 : RMSR for Tikhonov surface temperature estimation. 

 

 
 Then, the result of the identification of the surface temperature is presented in Figure 11 

for three values of Tikhonov regularization parameter ( optim , 2optim , 2 optim ). We thus 

visualize the sensitivity of the estimates with respect to some deviations in the regularization 
parameter value from the Morozov principle. It is noted that the temperature identified is 
representative of the temperature entered in the model. 
 We find that the standard deviation of the residues is the standard deviation of the added 
noise to the deformation. The identification performed is therefore coherent. The inversion 
procedure is thus validated by the residuals recalculated after identification. 

 
Figure 11 : Comparison of the input surface temperature and the identified surface 

temperature using noised deformation for different Tikhonov regularization parameter. 
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4.5 Experimental Results 
  

The experimental measurements of the strain gauge are used to identify the real imposed 
temperature (which is measured to verify the inversion) (Figure 5). Then, the result of the 
identification of the surface temperature is presented in Figure 12 for three values of Tikhonov 

regularization parameter ( optim , 2optim , 2 optim ). We thus visualize the sensitivity of the 

estimates with respect to some deviations in the regularization parameter value from the 
Morozov principle. It is noted that the temperature identified is representative of the 
temperature entered in the model. 
Then, it is thus possible to reconstruct the temperature signal applied to the surface. The 

residues on the deformation (
7

1.31 10residues m
−

= ) (Figure 13) are in agreement with the noise 

measured on the experimental setup (
7

m 1.116 10 m
−

= ). 

 
Figure 12 : Comparison of the real input surface temperature and the identified surface 

temperature using gauge strain measurements for different Tikhonov regularization 
parameter. 
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Figure 13 : Residues for different Tikhonov regularization parameter. 

 

 

5. Conclusion 
 
This work proposes an inverse methodology to define the temperature evolution of a heated 
surface through the deformation measurements.  The approach presented is based on 
mechanical and thermal equations, applied to the measurement of deformation resulting from 
mechanical distortions due to heating.  Indeed, no temperature measurement is required. The 
inversion procedure developed in this work is based on the convolution product of the impulse 
response of the thermoelastic problem, by the deformation signal.  This work provides a novel 
approach that is easy to use. An inverse identification method for the linear coefficient of 
thermal expansion is presented. The results obtained from experimental measurements are 
consistent. In addition, our procedure enables identification of the evolution governing the 
temperature on the surface of a heated solid, whatever the form of the temperature function. 
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Abstract. Modulated thermotransmittance infrared imaging is a non-destructive
method for measuring thermal properties and temperature �elds in semi-transparent
media. It di�ers from IR thermography as it does not require knowledge of the ma-
terial's emissivity and can achieve spatial resolutions down to 10 µm/px. Through
this experimental tutorial, we propose to measure the heat di�usivity and the ther-
mal �eld in a glass wafer. After a brief description of the setup and the demodulation
technique, the analytical model of the temperature will be derived and used in an
inverse method to measure the boro�oat thermal di�usivity.
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1 Introduction

In this tutorial work, the semitransparent materials under study are non-scattering at their
surface as their roughness is much lower than the illumination wavelength λ ∈ [2 − 6] µm,
and the re�ectance at their surface is considered specular. All our samples are double-side
polished to remain in this working hypothesis. In addition, we use homogeneous materials,
whose scattering in the volume is negligible compared to the absorbance. We develop the
experiment mainly using a double-side polished glass wafer. In addition, these materials can
re�ect or absorb a part of the incident light, as shown in Figure 1.

We present some contactless methods to measure temperature of semitransparent materials,
without coating them. First, we introduce the IRT applied to semitransparent media and the
associated issue to measure the temperature �eld. Second, we detail the principle of thermo-
transmittance.

Proper emission

Transmitted flux

Reflected flux

Incident flux
Semitransparent 

medium

Figure 1: IR radiations interactions with a semitransparent medium.

IRT applied to semitransparent materials

Measuring temperature in semitransparent media using IRT is much more challenging than
in opaque ones. The proper emission comes from the two material surfaces, but also from
its volume. The emissivity is no longer de�ned for these materials: one uses the apparent
emissivity [1] or emittance [2]. In addition, it is essential to consider the radiations from the
environment, which are re�ected, absorbed, and transmitted through the material [3].

Because of these challenges, IRT in semitransparent media is not yet widely used, although
several groups are interested in it and develop speci�c calibration processes. For instance,
some works measured the emittance, such as [3, 4, 5, 6], but the de�nition may vary from
one study to another, and not always take into account the direction of radiations. Other
works focused on thermal properties measurements of these materials, such as the thermal
di�usivity [7]. In this thesis work, we propose an alternative method that does not require the
knowledge of the emittance of the medium and allows to discriminate the signal of interest
from the radiation coming from the environment.

Thermotransmittance

We introduce the thermotransmittance phenomenon, by establishing the link between tem-
perature dependence of the transmitted light in non-opaque materials [8]. As a consequence,
to measure temperature using thermotransmittance, we need the proportionality factor: the

Tutorial 16: Thermal imaging in semi-transparent media - page 3
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thermotransmittance coe�cient κ (K−1). Unfortunately, there is no database on the coe�-
cient κ. This property is often measured but mostly in the visible or NIR range [9].

Preliminary studies reported promising results in calibrating the thermotransmittance coef-
�cient for various materials across di�erent spectral ranges, including mid-infrared [10] and
terahertz [11]. Additionally, works demonstrated the temperature dependency of absorbance
in water-ethanol mixtures within the near-infrared spectrum [12]. As the thermotransmittance
signal is a�ected by both absorbance and re�ectance variations (see section 2), it has potential
applications for diverse semitransparent media, providing either a measurement of thermore-
�ectance, thermo-absorbance, or a combination of both. Finally, these studies showed that the
thermal dependency of absorbance/transmittance varies with the illumination wavelength. As
a result, it should be possible to di�erentiate several components of a semitransparent media
depending on their thermotransmittance coe�cient behavior as a function of the wavelength,
provided the initial spectrum of each component is known.

However, the thermotransmittance coe�cient in the mid-IR is usually weak, about 10−4 K−1.
Therefore, it is essential to heat the sample su�ciently and use sensitive detectors (in the
work [10] ∆T = 120 K and detector with a dynamic range of 216).

The objectives of this tutorial are as follows:

1. to measure the thermotransmittance in a semi-transparent media from an IR beam;

2. to estimate the heat di�usivity in the bulk of the semi-transparent media.

2 Thermotransmittance working principle and modeling

This section describes the working principle of thermotransmittance. First, the transmitted
signal through a non-scattering media is detailed. Second, we introduce the thermal depen-
dence of this signal and present the working hypotheses.

Transmittance of a semitransparent material

When a monochromatic incident �ux Φ0 illuminates a semitransparent material, a part of the
�ux is re�ected at the material surface, and a part is transmitted through the sample [13]
depending on the re�ectance coe�cient R0, as illustrated in Figure 2. As it passes through the
medium, the �ux is attenuated by the attenuation coe�cient α0 (m−1) within the thickness
Lz (m) of the material. At ambient temperature, the transmitted �ux is written ΦΓ = Φ0Γ0,
with Γ0 the transmittance of the material which is expressed in the following equation.

Γ0 = [1−R0]
2e−

∫ Lz
0 α0(z)dz (1)

Expression of the thermotransmittance

Since the optical properties of a material vary with temperature, we express the equation 1
as a function of temperature in the general case, where both surfaces of the sample are not
necessarily at the same temperature.

Γ(T ) = [1−R(T1)]︸ ︷︷ ︸
Surface 1

[1−R(T2)]︸ ︷︷ ︸
Surface 2

e−
∫ Lz
0 α(z,Tz)dz︸ ︷︷ ︸
Volume

(2)

The thermal dependency of transmittance comes from both the re�ectance and the attenuation
coe�cient. At the �rst order, their temperature variations are expressed in the equations 3

Tutorial 16: Thermal imaging in semi-transparent media - page 4

234/339



METTI 8 Advanced School

Thermal Measurements and Inverse Techniques

Ile d'Oléron, France,

Sept.24th - Sept. 29th, 2023

Figure 2: Illustration of a light beam path in a semitransparent medium.

and 4, with ∆T = T − T0 the temperature variation, κR the thermore�ectance coe�cient
(K−1), and κα the thermo-absorbance coe�cient (K−1).

R(T ) = R0[1 + κR∆T ] (3)

α(T ) = α0[1 + κα∆T ] (4)

By injecting 3 and 4 in the expression 2 and linearizing the exponential term, the thermo-
transmittance relation at �rst order is given in the following expression.

∆Γ(T )

Γ0
≈ − R0κR

1−R0
[∆T1 +∆T2]︸ ︷︷ ︸

re�ectance

−α0κα

∫ Lz

0
∆T (z)dz︸ ︷︷ ︸

absorbance

(5)

As a result, the re�ectance part gives information about the temperature variations at the
surfaces of the sample, whereas the absorbance provides information on the temperature
gradient through the thickness. In this tutorial we limit the study to uniform temperature
along the material thickness (∆T1 = ∆T2 = ⟨∆T ⟩z = ∆T ). The thermotransmittance has
therefore a simple expression:

∆Γ(T )

Γ0
= κ∆T (6)

κ is the thermotransmittance coe�cient (K−1) which contains both absorbance and re�ectance
thermal dependencies.

3 Modulated thermotransmittance imaging experimental setup

Figure 3 illustrates the experimental setup for modulated thermotransmittance imaging. The
thermal modulation of the sample has great advantage to increase the signal to noise ratio by
�ltering the noise from images in order to detect the weak thermotransmittance signal.
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In the experimental setup, we use the IR source, the mechanical chopper for modulating the
source, the annular Peltier module for heating the sample, and an infrared camera as detector.
The double-demodulation is post-processed, and the operations are detailed in section 4.

(b)

A0

Transmitted 
signal

t (s)

ΔA

T0

Temperature

ΔT

t (s)

φ/ωT

Chopper

Peltier & 
Sample IR camera

IR Lamp + 
Monochromator Synchronizationfc

2 fc

Temperature 
modulation, fT

Beam expander
IR beam

IR beam + 
proper emission

Tc

Annular Peltier 
and Sample

r
z

0 r0-r0

Tc

27 mm

Figure 3: Experimental setup for modulated thermotransmittance imaging measurement. The
insert illustrates the Peltier module with its dimensions.

Heating of the sample

The sample is heated using a ring-shaped Peltier module. The temperature at the edges of
the wafer is modulated at T (t) = T0 +∆T cos(2πfT t), with T0 ∼ 20◦C, ∆T ∼ 10◦C. We will
choose the modulation frequency fT in the order of tens mHz for Boro�oat wafer.

Infrared camera properties

We use an infrared camera as detector (FLIR SC7000). The camera has an Indium-antimonide
sensor composed of 256 x 320 pixels with a pitch of 30 µm. The focal length of the objective is
50 mm, and the spatial resolution of the images recorded by the camera around 200 µm/pixel.
In addition, the camera spectral sensitivity range is λ ∈ [2.5− 5.5] µm. Figure 4 plots the
normalized spectral sensitivity of the acquisition system, which includes the spectral responses
of the camera, the lens objective, the air absorption, and the IR lamp emission. We are not
able to di�erentiate the di�erent contributions with the available equipment. However, the
absorption peak at λ = 4300 nm is the signature of the CO2 in the air [14]. In this tutorial,
polychromatic light integrated over the spectral range of the camera is used to increase the
SNR.

The signal measured by each pixel, Upix(t), is directly proportional to the total �ux Φtot(t)
it receives. Depending on the received �ux, each pixel generates an electrical signal: Upix =
ρpixΦtot, with ρpix a proportionality factor speci�c to each pixel since they are all slightly
di�erent (size, noise, o�set, ...). To compensate for these di�erences, we perform a non-
uniformity correction (NUC) before starting the measurements [15]. The method consists in
taking several images of a black body covering the entire �eld of view of the camera. After
calculating the temporal and spatial average of the signal, a correction coe�cient is applied
to each pixel. This operation is performed by the software of the camera (Altair).

In addition, the IR camera converts the voltage signal of each pixel in digital levels (DL).
Since the camera has a dynamic range of 14 bits, the pixel value is in the range [0 ; 214-1] DL.
If the incident �ux is too intense, the pixel is saturated, and its value is theoretically 16 383
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Figure 4: Spectral sensitivity of the acquisition chain, measured by scanning the wavelength
with the monochromator. The peak around λ = 4300 nm corresponds to the CO2 absorption.

DL. However, the upper limit of the camera operating range is 14 000 DL. Beyond that, the
incident �ux and pixel value are no longer proportional, and the signal should be saturated.
In addition, below 2 000 DL, the camera does not operate optimally either. Therefore, always
be sure to work in the [2 000 - 14 000] DL range.

Finally, a Stirling cools the camera to a temperature of TCAM ≈ 79 K. As long as the camera
is not properly cooled, the recorded signal is not stable enough. Figure 5 shows the drift of
the measured signal over time. We propose to determine this drift by placing an ambient
black body at 30 cm in front of the camera and regularly recording the measured signal. The
sensor is only stable after two hours of operation: the measured signal at t = 200 min varies
by more than 5% compared to the beginning of the measurement. That shows the impor-
tance of letting the camera cool down for at least two hours before making the measurements.
Working with modulated signals reduces the impact of the camera drift on the results.

Figure 5: Drift of the signal recorded by the camera over time, measured on a ROI of 50x50
pixels.
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Mechanical chopper settings

In this setup, the camera is synchronized with the mechanical chopper to record one frame
when the chopper cuts the IR beam, and another when the light passes through the sample
[16]. The only requirement for the chopper frequency fc is fc ≫ fT to properly remove the
proper emission of the sample. We choose fc = 11 Hz, and the camera acquisition frame rate
is fcam = 22 Hz. The output signal of each pixel of the camera is given in the equation 7:
the IR transmitted signal is only measured every other frame, at the frequency fc. C(t) is the
chopper rectangular wave function equals to 1 when the IR beam passes through the sample,
and 0 when it is cut. The next section presents the double-demodulation method, applied on
the images recorded by the camera.

Upix(t) = ρpix [Φ0Γ0(1 + κ∆T cos(2πfT t))C(t) + E(T, t)] (7)

{
C(t) = 0, when the chopper cuts the IR beam

C(t) = 1, when the IR beam passes through the sample

(8)

(9)

4 Double-demodulation method applied on images

As mentioned in the introduction, we use the two-image method, subtracting the proper
emission thanks to the synchronization of the camera with the chopper.
The presented methods allow us to demodulate simultaneously the signal recorded by all the
pixels of the camera. We do not work in real time but post process the �lms recorded during
the experiment.

4.1 Proper emission subtraction: the two-image method

As mentioned, the camera is synchronized with the mechanical chopper to discriminate the
transmitted �ux Φ0Γ(t) from the parasitic signal E(t). The camera successively records one
frame when the chopper lets the light passing through the sample (Uon) and another when it
cuts the light beam (Uo�). The frequency of the camera is fcam = 2fc with fc the chopper
frequency, we de�ne τc = 1/fc. The di�erence between two consecutive frames results in
equation 10.

Uon(t)− Uo�(t+
τc
2
) = ρpixΦ0Γ0[1 + κ∆T cos(2πfT t)] + ∆res (10)

The term ∆res is the residuals of the parasitic radiations and noise measurement after the
subtraction: ∆res = E(t) − E(t + τc

2 ). These residuals are negligible compared to the ther-
motransmittance signal, providing some conditions: the proper emission must be constant
between two consecutive frames, otherwise the residual ∆res depends on the temperature, and
the source demodulation is not correctly performed. This is why the chopper frequency, fc,
is set much higher than the thermal frequency, fT . The �rst experimental measurement is to
check if the proper emission is correctly removed with the chosen frequencies (fT , fc).
Figure 6 shows the two-image method on two consecutive images recorded by the IR camera,
when the IR �ux passes through the sample (a) and when it is cut by the chopper (b). The
subtraction of the two images results in frame (c). As mentioned in section 3, the camera
has a limited dynamic range of 14 bits. Since all the parasitic radiations are added to the
useful IR transmitted �ux, the remaining signal after two-image subtraction may be weak. So,
we understand the interest of maximizing the IR �ux compared to the unwanted radiations.
Several strategies are possible:
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(d)

Transmitted IR beam 
+ parasitic radiations Parasitic radiations

Transmitted IR beam

Peltier module 
edges

Figure 6: Images of (a) IR transmitted beam with proper emission, Uon(t), (b) proper emission
and parasitic radiations, Uo�(t +

τc
2 ), and (c) IR beam after proper emission subtraction,

Uon(t)− Uo�(t+
τc
2 ). (d) Illustration of the two-image process.

� As we cannot in�uence the proper emission of the sample, we must operate on the IR
incident beam. One possibility is to concentrate its power. The higher the intensity
of the transmitted beam, the more we can decrease the integration time of the camera
and, thus, the component of the proper emission.

� The wavelength of the IR beam is chosen where the measured IR transmitted beam is
maximal. This wavelength depends on the camera sensitivity and the transmittance of
the sample.

� We can use an IR bandpass �lter between the sample and the camera. That eliminates
the components of the proper emission outside the �lter. The �lter must be adapted to
the wavelength of the IR beam.

Using a �lter generates parasitic re�ections, attenuates the transmitted IR beam, and must
be changed according to the wavelength. As a consequence, we will focus on the �rst two
points for the following. Finally, after the two-image subtraction, we get the signal Upix,IR(t)
at the chopper frequency fc.

Upix,IR(t) = ρpixΦ0Γ0[1 + κ∆T cos(2πfT t)] + ∆res (11)

4.2 Demodulation of the transmitted signal

A numerical demodulation is used to obtain the module and phase from the thermotrans-
mittance. A Fast Fourier Transform (FFT) algorithm in Matlab is employed to process the
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image. These, in each pixel of the image we obtain the module:

∥∆Upix,IR(ω = 2πfT )∥ = ρpixΦ0Γ0κ∆T, (12)

and the thermotransmittance phase

arg(∆Upix,IR(ω = 2πfT )) = ϕ̂ (13)

These two quantities can be used to estimate the heat di�usivity, convective coe�cient, or to
calibrate the thermotransmittance coe�cient κ over the spectral range of the camera. The
demodulation based on FFT requires to record at least 10 periods to ensure a su�cient spectral
resolution in the process data. The longer the experiments lasts, the better the precision of
the algorithm is.

5 Heat transfer modeling of a thin wafer in cylindrical coordi-

nates

This section studies the heat transfer in a thin silicon wafer heated at its edges by a ring-shaped
Peltier module. We calculate the temperature variation ∆T in the sample, and determine the
operating modulation frequency fT .

r

z

Tc(t)

0 r0-r0

r
0-r0 r0

h

h

Tc(t) Tc(t)

(a)

(b)

Peltier module

Sample

0
Lz

z

Peltier module

Sample

Peltier module

Thermocouple

(c)

Figure 7: Illustration of the heat transfer problem. (a) 3D view of the Peltier module and
the sample heated to a modulated temperature Tc(t). (b) Cross-sectional view with boundary
conditions. (c) Image of the Peltier module.

5.1 Solving the heat transfer equation

The shape of the heating system is important to let the incident �ux Φ0 passing through the
sample. The sample and the Peltier module are positioned vertically. Figure 7 illustrates the
geometry of the problem with the boundary conditions. Let's consider a sample of radius
r0 (m) and thickness Lz (m), of thermal di�usivity a (m2/s) and thermal conductivity k
(W/m/K). Due to the geometry of the wafer and the heating system, we use the cylindrical
coordinate system (r, ϑ, z). As the sample is homogeneously heated at its edges, we do not
consider the azimuth coordinate ϑ: the temperature does not depend on the angle ϑ. The
�nal coordinate system is (r, z).

Boundary conditions
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The temperature is set to the modulated temperature T (t) = T0 +∆T cos(ωT t) at the edges
of the sample (r = r0 and r = −r0), with T0 the ambient temperature and ωT = 2πfT
the angular frequency (rad/s). For symmetry reasons, at the position r = 0, the radial �ux
is assumed to be equal to zero. We impose convection losses at the surfaces z = 0 and
z = Lz, with h being the convection coe�cient (W/m2/K). The system of equations [14 to
19] expresses the heat transfer problem in cylindrical coordinates with boundary conditions
over time t. 

∂2T (r, z, t)

∂r2
+

1

r

∂T (r, z, t)

∂r
+

∂2T (r, z, t)

∂z2
=

1

a

∂T (r, z, t)

∂t

− k
∂T (r, z, t)

∂z

∣∣∣∣
z=0

= −h(T (r, z = 0, t)− T0)

− k
∂T (r, z, t)

∂z

∣∣∣∣
z=Lz

= h(T (r, z = Lz, t)− T0)

∂T (r, z, t)

∂r

∣∣∣∣
r=0

= 0

T (r = r0, z, t) = T (r = −r0, z, t) = T0 +∆T (r0) cos(ωT t)

T (r, z, t = 0) = T0

(14)

(15)

(16)

(17)

(18)

(19)

Linearization of convective losses

The boro�oat thermal conductivity is about k ≈ 1 W/m/K, its thickness is 500 µm and the
convection coe�cient is approximately h ≈ 15 W/m2/K for the vertical con�guration used in
the experimental setup. This leads to a Biot number Bi ≈ 2.10−2 ≪ 1, which means that the
temperature is homogeneous in the sample thickness. As a result, the partial derivative with
respect to z can be linearized, as expressed in equation 21. We substitute this result in the
previous system of equations.

∂2T (r, z, t)

∂z2
≈

∂T (r,z,t)
∂z

∣∣∣
z=Lz

− ∂T (r,z,t)
∂z

∣∣∣
z=0

Lz
(20)

≈ − 2h

kLz
(T (r, z = Lz, t)− T0) (21)

Temperature decomposition as periodic function

To solve the system, the temperature is decomposed into a constant and a term depending
on the angular frequency ωT :

T (r, t) = T0 +∆T (r, ωT )e
iωT t (22)

With ∆T (r, ωT ) the complex temperature amplitude at the frequency fT . After substituting
the partial derivative with respect to z and the expression of T (r, t), the previous system of
equations [14 to 19] becomes:

Tutorial 16: Thermal imaging in semi-transparent media - page 11

241/339



METTI 8 Advanced School

Thermal Measurements and Inverse Techniques

Ile d'Oléron, France,

Sept.24th - Sept. 29th, 2023



d2∆T (r, ωT )

dr2
+

1

r

d∆T (r, ωT )

dr
− 2h

kLz
∆T (r, ωT ) =

iωT

a
∆T (r, ωT )

d∆T (r, ωT )

dr

∣∣∣∣
r=0

= 0

|∆T (r = r0, ωT )| = |∆T (r = −r0, ωT )| = ∆T (r0)

(23)

(24)

(25)

Solution of the system

The solution of the system is given in equation 26, with H = 2h/kLz the loss factor (m−2),
I0 and K0 the modi�ed Bessel functions of �rst and second kind.

∆T (r, ωT ) = AI0
(
r

√
H + i

ωT

a

)
+BK0

(
r

√
H + i

ωT

a

)
(26)

A and B are determined with the boundary conditions:

� At the center of the wafer, an adiabatic condition is assumed. As the function K1(r)
tends towards ∞ at r = 0, B must be equal to zero to satisfy equation 24.

� At the edge r = r0, the boundary condition gives: A = ∆T (r0)/I0
(
r0
√

H + iωT
a

)
.

Finally, the complex temperature �eld as a function of the position r and the frequency fT is
expressed in equation 27.

∆T (r, ωT ) = ∆T (r0)
I0

(
r
√

H + iωT
a

)
I0

(
r0
√
H + iωT

a

) (27)

Two quantities are then extracted from this model, the phase ϕ = arg(∆T (r, ωT )) and the
normalized modulus ∥∆T (r, ωT )∥/∥∆T (R,ωT )∥.

6 Inverse methods

6.1 Minimization and objective function

The inverse method to estimated a is based here on the minimization between the calculated
phase from the model and the measured thermotransmittrance phase. The cost function to
be minimised takes into account the error bar on the phase measurements, and writes as

J (a) = (ϕ̂− ϕ(a))TW (ϕ̂− ϕ(a)) (28)

where W is a diagonal weight matrix containing the standard deviation of the measurements
ϕ̂. Each element of the diagonal of the matrix is computed as 1/σ2

ϕ̂
.

A simple gradient method can be used to estimate a. Algorithms such as Levenberg-Marquardt
are recommended in Matlab. But here we propose to use the Gauss-Newton algorithm such
as

ak+1 = ak + [(Sk)TWSk]−1(Sk)TW (ϕ̂− ϕ(ak)), (29)

where the S is the sensitivity of the parameter a on the phase. It is expressed as

S =
∂ϕ(a)

∂a
. (30)

This quantity can be computed numerically using a �nite di�erence scheme and by assuming
a small variation of the di�usivity, i.e. 1%.
The algorithm can be initiated with a heat di�usivity of 1 mm2/s as it is the order of magnitude
for glass wafer.
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6.2 Standard deviation

Once the di�usivity estimated, one can compute the associated standard deviation. From the
standard deviation on the heat di�usivity is straightforward as

σa = σr

√
[(S)TWS]−1 (31)

with σr =
√
J (a)/(N − 1) where N is the number of data points used to �t a. It is important

to note that this standard deviation takes only into account the deviation between the mea-
surement and the model, and the standard deviation on the measurements. However, several
others bias in the measurement (position of the wafer, non linearity in the Peltier module
during the heating...) can increase signi�cantly this value.

7 Measurements

7.1 Experimental setting

Instructions to realise the thermal imaging in semi transparent media, and an estimate of the
thermal di�usivity of a Boro�oat sample are as follows:

1. Turn on all the instruments and set the chopper chopping frequency to fc ∼ 10−12 Hz.
This value can be checked on the oscilloscope.

2. Set the waveform generator to trigger the camera. Two triggers need to be sent to the
camera: one when the chopper is close, one when the chopper is open. The camera
trigger needs therefore to be set at 2fc ∼ 20− 24 Hz.

3. Set the thermal modulation at 20 mHz with a voltage peak-peak value of 4 V. The
electronic card powering the Peltier module converts this signal in current at the rate
of 1 A/V. Use the second channel of the waveform generator to do so.

4. Once the periodic regime is established (after 10 min), record at least 10 thermal mod-
ulations to perform an accurate Fourier transform with at least a spectral resolution of
2 mHz.

7.2 Image processing

Once the set of a data is recorded, the data processing consists in two successive steps. First,
the proper emission and transmitted signal needs to be separated. The images when the
chopper is open and close are subtracted. A example of this signal are presented in Figure
8(a) and (b).

The variations of the transmitted signal over the recorded time is presented in Figure 8(c)
for two pixels. Pixel 1, close to the edge where the wafer is heated, clearly shows a peak to
peak modulation of 5 × 10−3. Pixel 2, taken farther from the wafer edge, shows the same
modulation but attenuated and shifted. This behaviour is expected. It is important to note
here that a signal variation of only 1% is recorded at the maximum (pixel 1), corresponding
to a variation of 80 DL over 8000 DL. This illustrates the weakness of the signal and justi�ed
the advanced metrology that needs to be used to be able to measure it properly.

The modulus of these signals, obtained by FFT, are presented in Figure 8(d). Two clear peaks
at 20 mHz can be observed, validating the good result of the method. Such demodulation
processing is extended to all the pixels of the images, and the �elds at 20 mHz are extracted
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for the parameter estimation.

Figure 8: Image processing. (a) proper emission. (b) transmitted signal. (c) transmitted
signal recorded during the experiment and divided by its mean. The location of the two
pixels is indicated in (b). (d) associated fourier transform of the signal shown in (c).

7.3 Results

The modulus and phase �elds obtained at 20 mHz are presented in Figure 9(a) and (b),
respectively. Only the part of the image containing the IR beam (see Figure 8(b) for compar-
ison) can be exploited. The rest of the image is only noise.

Both the modulus and the phase decrease from the edge of the wafer toward the center (be-
tween 2 and 15 mm in the image). Several artefacts are visible in the images. They are
associated with the IR sensor itself, where small variations in the pixel reading by the camera
electronics can be seen here. Usually, such artefacts are not visible when measurements with
high SNR are performed.
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Figure 9: Image demodulation. (a) modulus of the thermotransmittance at 20 mHz. (b) the
corresponding phase shift. (c) phase shift along a wafer radius average in the white rectangle
in (b). (d) the corresponding modulus for the same location. A comparison with the model
is done in (c) and (d).

In order to �t the thermal di�usivity, the data in the white rectangle are extracted and aver-
aged along the vertical position (20 pixels) to obtain the phase versus the wafer radius. The
error bar in the experimental data are related to the standard deviation over the average 20
pixels. Equation 29 is used to estimate the thermal di�usivity. The convection coe�cient is
taken to be 15 W/m2/K, the wafer has a thickness of 500 µm, and the thermal conductivity
of Boro�oat is 1 W/m/K. The algorithm was able to converge in less than 10 iterations (see
Figure 10). The tolerance limits was set to 10−6.

The result of the �t can be seen in Figure 9(c). Overall a good agreement between the model
and the data is observed, except when r > 8 mm where the IR sensor artefacts are visible.
The estimated di�usivity is a = (0.93± 0.2) mm2/s which is typically in the expected range
for such glass wafer. A check on the modulus distribution is done through Figure 9, and here
again, a excellent agreement between the model and data is obtained.
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Figure 10: Convergence of the Gauss-Newton algorithm during the di�usivity estimation.

8 Conclusions

In this tutorial a new method to measure the temperature �elds in semi-transparent media
was introduced. Thermotransmittance enabled a contactless measurement of the mean tem-
perature in semi-transparent media with the downside to be a very weak signal. Therefore, an
advanced metrology was carried out, based on a double modulation of the signal recorded by
the camera. Image processing in Matlab enabled to extract the thermotransmittance phase
and modulus which were successfully used for parametric estimation. More detailed on the
techniques can be found in the following publication [17].

Such technique can be extended to many other measurements ranging from optical properties
characterisation, thermal microscopy, thermal characterization of heterogeneous materials, to
3D temperature �elds measurements.

References

[1] J. Gieseler, A. Adibekyan, C. Monte, J. Hollandt, Apparent emissivity measurement of
semi-transparent materials part 2: Theoretical concept, Journal of Quantitative Spec-
troscopy and Radiative Transfer 258 (2021) 107317. doi:10.1016/j.jqsrt.2020.107317.
URL https://doi.org/10.1016/j.jqsrt.2020.107317

[2] S. Jeon, S.-N. Park, Y. S. Yoo, J. Hwang, C.-W. Park, G. W. Lee, Simultaneous mea-
surement of emittance, transmittance, and re�ectance of semitransparent materials at
elevated temperature, Optics Letters 35 (23) (2010) 4015. doi:10.1364/ol.35.004015.
URL https://doi.org/10.1364/ol.35.004015

[3] J. Gieseler, A. Adibekyan, C. Monte, J. Hollandt, Apparent emissivity measurement
of semi-transparent materials part 1: Experimental realization, Journal of Quantitative
Spectroscopy and Radiative Transfer 257 (2020) 107316. doi:10.1016/j.jqsrt.2020.107316.
URL https://doi.org/10.1016/j.jqsrt.2020.107316

[4] O. Rozenbaum, D. D. S. Meneses, Y. Auger, S. Chermanne, P. Echegut, A spec-
troscopic method to measure the spectral emissivity of semi-transparent materials
up to high temperature, Review of Scienti�c Instruments 70 (10) (1999) 4020�4025.

Tutorial 16: Thermal imaging in semi-transparent media - page 16

246/339



METTI 8 Advanced School

Thermal Measurements and Inverse Techniques

Ile d'Oléron, France,

Sept.24th - Sept. 29th, 2023

doi:10.1063/1.1150028.
URL https://doi.org/10.1063/1.1150028

[5] D. D. S. Meneses, P. Melin, L. del Campo, L. Cosson, P. Echegut, Apparatus for
measuring the emittance of materials from far infrared to visible wavelengths in ex-
treme conditions of temperature, Infrared Physics andTechnology 69 (2015) 96�101.
doi:10.1016/j.infrared.2015.01.011.
URL https://doi.org/10.1016/j.infrared.2015.01.011

[6] A. Adibekyan, E. Kononogova, C. Monte, J. Hollandt, Review of PTB measurements on
emissivity, re�ectivity and transmissivity of semitransparent �ber-reinforced plastic com-
posites, International Journal of Thermophysics 40 (4) (Mar. 2019). doi:10.1007/s10765-
019-2498-0.
URL https://doi.org/10.1007/s10765-019-2498-0

[7] A. Philipp, N. W. Pech-May, B. A. F. Kopera, A. M. Lechner, S. Rosenfeldt, M. Retsch,
Direct measurement of the in-plane thermal di�usivity of semitransparent thin �lms by
lock-in thermography: An extension of the slopes method, Analytical Chemistry 91 (13)
(2019) 8476�8483. doi:10.1021/acs.analchem.9b01583.
URL https://doi.org/10.1021/acs.analchem.9b01583

[8] E. A. A. Pogna, X. Jia, A. Principi, A. Block, L. Banszerus, J. Zhang, X. Liu, T. So-
hier, S. Forti, K. Soundarapandian, B. Terrés, J. D. Mehew, C. Trovatello, C. Coletti,
F. H. L. Koppens, M. Bonn, H. I. Wang, N. van Hulst, M. J. Verstraete, H. Peng,
Z. Liu, C. Stampfer, G. Cerullo, K.-J. Tielrooij, Hot-carrier cooling in high-quality
graphene is intrinsically limited by optical phonons, ACS Nano 15 (7) (2021) 11285�
11295. doi:10.1021/acsnano.0c10864.
URL https://doi.org/10.1021/acsnano.0c10864

[9] M. Polyanskiy, Refractiveindex.info.
URL https://refractiveindex.info/

[10] C. Pradere, M. Ryu, A. Sommier, M. Romano, A. Kusiak, J. L. Battaglia, J. C. Bat-
sale, J. Morikawa, Non-contact temperature �eld measurement of solids by infrared
multispectral thermotransmittance, Journal of Applied Physics 121 (8) (2017) 085102.
doi:10.1063/1.4976209.
URL https://doi.org/10.1063/1.4976209

[11] M. Bensalem, A. Sommier, J. C. Mindeguia, J. C. Batsale, L.-D. Patino-Lope, C. Pradere,
Contactless transient THz temperature imaging by thermo-transmittance technique on
semi-transparent materials, Journal of Infrared, Millimeter, and Terahertz Waves 39 (11)
(2018) 1112�1126. doi:10.1007/s10762-018-0521-3.
URL https://doi.org/10.1007/s10762-018-0521-3

[12] N. Kakuta, Y. Fukuhara, K. Kondo, H. Arimoto, Y. Yamada, Temperature imaging of
water in a microchannel using thermal sensitivity of near-infrared absorption, Lab on a
Chip 11 (20) (2011) 3479. doi:10.1039/c1lc20261h.
URL https://doi.org/10.1039/c1lc20261h

[13] E. Hecht, Optics, 4th Edition, Addison Wesley, 2002.

[14] P. Linstrom, Nist chemistry webbook, nist standard reference database 69 (1997).
doi:10.18434/T4D303.
URL http://webbook.nist.gov/chemistry/

Tutorial 16: Thermal imaging in semi-transparent media - page 17

247/339



METTI 8 Advanced School

Thermal Measurements and Inverse Techniques

Ile d'Oléron, France,

Sept.24th - Sept. 29th, 2023

[15] Y. Souhar, Caractérisation thermique de matériaux anisotropes à hautes températures,
Theses, Institut National Polytechnique de Lorraine (May 2011).
URL https://hal.univ-lorraine.fr/tel-01749289

[16] M. Romano, M. Ryu, J. Morikawa, J. Batsale, C. Pradere, Simultaneous microscopic
measurements of thermal and spectroscopic �elds of a phase change material, Infrared
Physics and Technology 76 (2016) 65�71. doi:10.1016/j.infrared.2016.01.010.
URL https://doi.org/10.1016/j.infrared.2016.01.010

[17] C. Bourges, S. Chevalier, J. Maire, A. Sommier, C. Pradere, S. Dilhaire, Infrared
thermotransmittance-based temperature �eld measurements in semitransparent media,
Review of Scienti�c Instruments 94 (3) (2023) 034905. doi:10.1063/5.0131422.
URL https://doi.org/10.1063/5.0131422

Tutorial 16: Thermal imaging in semi-transparent media - page 18

248/339



METTI 8 Advanced School  Ile d’Oléron, France 
Thermal Measurements and Inverse Techniques  Sept. 24th – Sept 29th, 2023 

Tutorial 12: Optimal Wavelength Selection Criteria for Multispectral Pyrometry – 
page 1 

Tutorial 12 : Optimal Wavelengths Selection Criteria for 
Multispectral Pyrometry 
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1 ITheMM (EA 7548), Université de Reims Champagne-Ardenne, 51100 Reims, 
France. 
E-mail: Christophe.Rodiet@univ-reims.fr

Abstract. In this tutorial, it’s shown that for mono-spectral and bi-spectral methods used for temperature 
measurement of opaque surfaces exhibiting non-uniform emissivity, optimal wavelengths minimizing the 
standard deviation on the estimated temperature can be obtained from similar laws to that of the Wien’s 
law, and for multi-spectral methods, a more general methodology (based on the ordinary least squares 
method) to obtain the optimal wavelengths selection is presented. The goal consists in minimizing the 
standard deviation of the estimated temperature (optimal design experiment). Two methods for 
wavelengths selection are presented, sequential and global with or without constraints on the spectral 
range. Then, the estimated temperature results obtained by a model considering up to a second-order 
polynomial global spectral transfer function of the overall system (including the emissivity) and for 
different number of parameters and wavelengths are compared. The model is based on the fluxes 
(Planck’s law and without fluxes ratio). Different selection criteria are presented. These points are 
treated from theoretical, numerical, and experimental points of view. 

Keywords: Multispectral, thermometry, pyrometry, temperature measurement, multi-band, optical 
measurement, emissivity, optimal wavelengths, infrared thermography. 

Nomenclature 

ϕ Flux, 𝑊𝑊.𝑚𝑚−2

M° Irradiance 𝑊𝑊.𝑚𝑚−3 (or 𝑊𝑊.𝑚𝑚−3. 𝑠𝑠𝑟𝑟−1) 

 C1 Constant Planck's law, W.m2

 C2 Constant Planck's law, m.K
 T Temperature, K or °C
 Tij Temperature calculated from the 

wavelengths filters 𝜆𝜆𝑖𝑖 , 𝜆𝜆𝑗𝑗 
∝ Proportional 

Greek letters 
𝜀𝜀 Emissivity 
𝜆𝜆 Wavelength, m 
𝜒𝜒 Sensitivity 

Indices and subscripts 
𝜆𝜆 Spectral, or wavelength 
m Mean  
i,j,k Number of filter 
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1. Introduction

The thermal characterization of weakly reflective opaque materials at high temperatures often 
uses optical methods for measuring space and/or time distributions of temperature [4]. It is 
usually done by infrared cameras, quantum detectors or photomultipliers (in the case of 
measurements at shorter wavelengths [5]). The difficulty with this type of measurement is the 
spatial and time variation of the emissivity of the material making it non-uniform over the 
sample surface, especially at high temperature where significant oxidation phenomena can 
occur. One solution is to make a measurement by the multispectral method [5-10] (a non-
exhaustive state-of-the-art has been made in [8], or in [2]). Even if the idea is interesting, its 
implementation is tricky because of the difficulty to choose the adapted wavelengths 𝜆𝜆𝑖𝑖. 
Indeed, they must be chosen "close enough" to overcome emissivity variations of the material 
(and more generally, the global transfer spectral function of the overall system, including the 
emissivity), but not "too close" to obtain an uncertainty on the measured temperature lowest as 
possible. Note that in this paper we speak indifferently of emissivity or global transfer function 
(of the overall system, including the emissivity), because each transfer function taking values 
in the range [0;1], so their product is bounded by 0 and 1. 
After a presentation of an analogous Wien’s laws allowing to find the “optimal” wavelengths for 
mono-spectral and bi-spectral measurements, the theoretical principle of the multi-spectral 
methods is presented and validated through numerical simulations and experiments. Several 
models are validated numerically through Monte-Carlo simulations for different spectral 
emissivity variations and compared experimentally. The facility is presented in section 5 and 
the considered typical variations of emissivity (or more generally, global transfer function) 
shown in section 4. These simulated variations of emissivity (or global transfer function) versus 
wavelength are used to validate our theoretical model for estimating temperature through an 
inverse technique based on an Ordinary Least Squares (OLS) method. The cost function (3.2) 
is used in order to estimate this temperature by inverse method. Based on the minimization of 
the standard deviation of the estimated temperature T, sequential and global selection 
methods are presented to determine the optimal wavelengths to choose for optimizing the 
temperature measurement. 

2. mono-spectral method: Analogous Wien’s law for optimal wavelengths
selection minimizing the relative error on the estimated temperature

Calling 𝑓𝑓(𝜆𝜆) the global spectral transfer function including all unknowns (emissivity 𝜀𝜀(𝜆𝜆), 
sample area, quantum efficiency…), the flux emitted by an object is defined by the Planck’s 
law (1) which can take a simpler form (named Wien’s approximation) if 𝜆𝜆𝜆𝜆 << 𝐶𝐶2 ≈
14400µ𝑚𝑚.𝐾𝐾: 
𝜑𝜑(𝜆𝜆,𝑇𝑇) = 𝑓𝑓(𝜆𝜆)𝑀𝑀𝑜𝑜(𝜆𝜆,𝑇𝑇) = 𝑓𝑓(𝜆𝜆) 𝐶𝐶1𝜆𝜆−5

exp�𝐶𝐶2𝜆𝜆𝜆𝜆�−1
≃

          Wien′s
  approximation

𝑓𝑓(𝜆𝜆)𝐶𝐶1𝜆𝜆−5exp �−𝐶𝐶2
𝜆𝜆𝜆𝜆
� ,∀𝜆𝜆𝜆𝜆 << 𝐶𝐶2 ≈ 14400𝜇𝜇𝜇𝜇.𝐾𝐾  (1)

Considering 𝜆𝜆 as a parameter, by differentiating the Planck’s law (1) with respect to 
temperature and equating the differential terms to errors, it can be shown that the relative error 
on the temperature is: 

𝑒𝑒𝑇𝑇
𝑇𝑇

= 𝑒𝑒𝜑𝜑
𝜑𝜑
𝜆𝜆𝜆𝜆
𝐶𝐶2
�1 − exp �−𝐶𝐶2

𝜆𝜆𝜆𝜆
�� ≃

  Wien′s
  approximation

𝑒𝑒𝜑𝜑
𝜑𝜑
𝜆𝜆𝜆𝜆
𝐶𝐶2

(2) 

Furthermore, if it is assumed that 𝑒𝑒𝜑𝜑 𝑓𝑓(𝜆𝜆) = 𝑘𝑘⁄  (with k a constant), find the wavelength that 
minimizes (2) under the Wien’s approximation, leads to: 
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min
𝜆𝜆
�𝑒𝑒𝑇𝑇
𝑇𝑇
� ⇒ 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝑒𝑒𝑇𝑇
𝑇𝑇
� = 0 ⇒ 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝑘𝑘𝑘𝑘
𝐶𝐶2

𝜆𝜆
𝑀𝑀𝑜𝑜� = 0 ⇔ 𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑇𝑇 = 𝐶𝐶2

6
≈ 2400𝜇𝜇𝜇𝜇𝜇𝜇 = 𝐶𝐶𝑀𝑀𝑀𝑀𝑅𝑅   (3) 

Accordingly, (3) shows that under the Wien’s approximation and for the mono-spectral 
measurements, the wavelength that minimizes the relative error on the temperature is defined 
from an analogous to Wien’s law: 𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑇𝑇 = 𝐶𝐶𝑀𝑀𝑀𝑀𝑅𝑅 ≈ 2400𝜇𝜇𝜇𝜇𝜇𝜇. Note that, equating the errors to 
the standard deviation (to the least squares sense), minimizing (2) is equivalent to minimize 
the standard deviation 𝜎𝜎𝑇𝑇 of the temperature for a constant standard deviation 𝜎𝜎𝜑𝜑 of the flux 
(cf. section 3.1.3).  
It seems legitimate to wish extend this law, but for a flux defined by Planck's law. The equation 
to solve being nonlinear (cf. (2) and (3)), the method consists in search numerically for several 
temperatures 𝑇𝑇𝑖𝑖 the wavelengths 𝜆𝜆𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜 that minimize 𝑒𝑒𝑇𝑇𝑖𝑖 𝑇𝑇𝑖𝑖⁄  (cf. figure 1), then to determine the
constant 𝐶𝐶𝑀𝑀𝑀𝑀𝑅𝑅 = 𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 by a least squares method, such as: 

𝐶̂𝐶𝑀𝑀𝑀𝑀𝑅𝑅 = argmin
𝐶𝐶𝑀𝑀𝑀𝑀
𝑅𝑅
∑ �𝜆𝜆𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐶𝐶𝑀𝑀𝑀𝑀
𝑅𝑅

𝑇𝑇𝑖𝑖
�
2
⇒ 𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 = 𝐶̂𝐶𝑀𝑀𝑀𝑀𝑅𝑅 ≈ 2410.3𝜇𝜇𝜇𝜇𝜇𝜇𝑖𝑖   (4) 

The residues defined by 𝑟𝑟(𝑇𝑇𝑖𝑖) = 𝜆𝜆𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜 − 2410.3 𝑇𝑇𝑖𝑖⁄  are plotted in figure 2. Low residue values

(cf. figure 2) corroborate a good fit of the law 𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 = 𝐶̂𝐶𝑀𝑀𝑀𝑀𝑅𝑅 ≈ 2410.3𝜇𝜇𝜇𝜇𝜇𝜇 to find the optimal 
wavelengths for mono-spectral measurements (with Planck’s law). 

Figure 1. Minimums of 𝑒𝑒𝑇𝑇 𝑇𝑇 ∝ 𝜆𝜆/𝑀𝑀𝑜𝑜⁄  for 𝑇𝑇 ∈
[300𝐾𝐾 ;  1300𝐾𝐾] (1 curve out of 30). 

Figure 2. Optimal wavelengths obtained 
numerically and by the law 𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐶𝐶�𝑀𝑀𝑀𝑀

𝑅𝑅 𝑇𝑇�  for 
𝑇𝑇 ∈ [300𝐾𝐾 ;  1300𝐾𝐾]. The maximum residue is of 

about 5.10-4µm. 

Note that, minimizing (2) is equivalent to maximizing (with respect to 𝜆𝜆) the sensitivity 𝜒𝜒𝑇𝑇 =
𝜕𝜕𝜕𝜕(𝜆𝜆,𝑇𝑇)
𝜕𝜕𝜕𝜕

, with 𝑓𝑓(𝜆𝜆) assumed to be constant. Indeed: 

𝜒𝜒𝑇𝑇 = 𝜕𝜕𝜕𝜕(𝜆𝜆,𝑇𝑇)
𝜕𝜕𝜕𝜕

= 𝐶𝐶2
𝜆𝜆𝑇𝑇2

�1 − exp �−𝐶𝐶2
𝜆𝜆𝜆𝜆
��

−1
𝜑𝜑(𝜆𝜆,𝑇𝑇) ≃

  Wien′s
  approximation

𝐶𝐶2
𝜆𝜆𝑇𝑇2

𝜑𝜑(𝜆𝜆,𝑇𝑇)  (5) 

Thus, using the Wien’s approximation, maximizing (5) with respect to 𝜆𝜆, leads to (cf. figure 3 
for an illustration): 

𝜕𝜕2𝜑𝜑(𝜆𝜆,𝑇𝑇)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

= 0 ⇔ 𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑇𝑇 = 𝐶𝐶2
6
≈ 2400𝜇𝜇𝜇𝜇𝜇𝜇 = 𝐶𝐶𝑀𝑀𝑀𝑀𝑅𝑅   (6) 
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Figure 3. Graphical illustration of the sensitivities. 

Note that, the optimal wavelengths are slightly shifted to the left of the maxima of the Planck’s 
curves (figure 3) and can be interpreted as a compromise between sensitivity and signal over 
noise ratio (cf. section 3.1.3).  

3. The multispectral method

The principle of multispectral method which is based on the use of multiple wavelengths to 
obtain the value of different physical quantities have been presented in the associated lecture 
of this METTI-8 School. Here, we focus our attention on a method using direct radiative heat 
fluxes in order to estimate the temperature of an opaque material with a spectral emissivity 
varying spatially and/or temporally. 

The estimation model used in this tutorial is an unbiased model (called TNL.Tabc model) based 
on the Planck law (3.1). This model considers a second-order polynomial model for modeling 
the overall spectral transfer function (including the emissivity) f(λ) through three unknown 
parameters (a, b ,c) to estimate. In (3.2), 𝜑𝜑𝑖𝑖

exp represents the flux measured at the experimental
wavelength 𝜆𝜆𝑖𝑖, and Nf the total wavelengths number. 

𝜑𝜑𝑖𝑖(𝑇𝑇, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐) = (𝑎𝑎 + 𝑏𝑏𝜆𝜆𝑖𝑖 + 𝑐𝑐𝜆𝜆𝑖𝑖2)�����������
=𝑓𝑓(𝜆𝜆) or 𝜀𝜀(𝜆𝜆)

𝐶𝐶1𝜆𝜆𝑖𝑖
−5

exp� 𝐶𝐶2𝜆𝜆𝑖𝑖𝑇𝑇
�−1

≃
  Wien

 approx.

(𝑎𝑎 + 𝑏𝑏𝜆𝜆𝑖𝑖 + 𝑐𝑐𝜆𝜆𝑖𝑖2)�����������
𝑓𝑓(𝜆𝜆) or 𝜀𝜀(𝜆𝜆)

𝐶𝐶1𝜆𝜆𝑖𝑖−5exp �−𝐶𝐶2
𝜆𝜆𝑖𝑖𝑇𝑇
�       ,∀𝑖𝑖 ∈ �1 ;  𝑁𝑁𝑓𝑓� (3.1)

The objective is to find the values of (T,a,b,c) that minimize the following cost function: 

𝐽𝐽(𝑇𝑇, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐) = ∑ �𝜑𝜑𝑖𝑖
exp − 𝜑𝜑𝑖𝑖(𝑇𝑇,𝑎𝑎, 𝑏𝑏, 𝑐𝑐)�2𝑁𝑁𝑓𝑓

𝑖𝑖=1 = �𝜑𝜑1
exp − 𝜑𝜑1(𝑇𝑇,𝑎𝑎, 𝑏𝑏, 𝑐𝑐)�2+. . . . . . . . . . . +�𝜑𝜑4

exp − 𝜑𝜑4(𝑇𝑇,𝑎𝑎, 𝑏𝑏, 𝑐𝑐)�2  (3.2) 

3.1. Selection of the optimal wavelengths for minimum error on the estimated 
temperature 

In this section, criteria allowing to define a methodology to follow to perform measurements 
without amplifying the uncertainties will be first established (section 3.1.1). Then, a method to 
determine sequentially the best wavelengths is presented in section 3.1.2. Even if this method 
is not optimal, it has an educational interest in showing what happens when the number of 
wavelengths is increasing. Next, it’s shown (section 3.1.3) for bispectral measurements that 
optimal wavelengths, minimizing the standard deviation on the estimated temperature, can be 
obtained by an analogous Wien’s law.To finish, the results of a global optimization (with and 
without constraints), which gives the “optimal global wavelengths” is shown (section 3.1.4). 
Even if the methods can be applied for any spectral emissivity variation, in order to simplify the 
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interpretation of the results, a unitary emissivity (or global spectral transfer function) is 
assumed for the simulation of the “experimental” fluxes used both for the sequential and global 
methods (Section 3.1). Note that each theoretical optimal wavelength represents 
experimentally the central wavelength of the narrow filter, which is used with the infrared 
camera. To conclude, a link between the temperature relative error, the flux sensitivity to the 
temperature, and the temperature standard deviation is established [9]. 

3.1.1. Some measurement criteria 
First, for monospectral measurements the increasing part of the Planck law is preferred since 
the relative sensitivities of flux to the temperature 𝜒𝜒𝑇𝑇𝑟𝑟 = 𝜒𝜒𝑇𝑇/𝜑𝜑𝜆𝜆 and to the wavelength 𝜒𝜒𝜆𝜆𝑟𝑟 =
𝜒𝜒𝜆𝜆/𝜑𝜑𝜆𝜆 are greater at short wavelengths (3.3) [10]. Secondly, for bispectral measurements, a 
flux ratio as large as possible is chosen to minimize the measurement uncertainty on the flux 
(3.4) (assuming that 𝑒𝑒𝜑𝜑𝜆𝜆𝑖𝑖 ≈ 𝑒𝑒𝜑𝜑𝜆𝜆𝑗𝑗) [1]. In addition, the filters must be chosen distant enough ∆λ 
(3.5) to avoid amplification of measurement uncertainties but also close enough to minimize 
measurement uncertainty due spectral emissivity (or more generally spectral global transfer 
function including emissivity) variation. More precisely, it can be shown that optimal bispectral 
wavelengths must be spaced from 1.9∆λ [9]. However, at very short wavelengths (UV), relation 
(3.5) can be linearized and therefore it becomes possible to choose a constant distance 
between two successive wavelengths [1, 10]. Furthermore, note that the relative uncertainty 
on the temperature eT/T [1] (under assumption 𝑒𝑒𝜑𝜑𝜆𝜆/𝑓𝑓(𝜆𝜆) = constant) is increasing with 
temperature (3.6). Even if relations (3.4) and (3.5) have been obtained by differentiating a flux 
ratio [8] (classical bispectral method based on the Wien approximation), they are also valid for 
the proposed method based on (3.1) with b = c = 0. 
Finally, note that relations (3.3) and (3.6) obtained by differentiating (3.1) under Wien 
approximation with b = c = 0 show that it is equivalent to maximize the sensitivity of the flux to 
the temperature ΧT or to minimize the relative uncertainty on the temperature eT/T [3, 9, 10]. 

𝜑𝜑𝜆𝜆.𝜒𝜒𝑇𝑇𝑟𝑟 = 𝜒𝜒𝑇𝑇 = 𝑑𝑑𝜑𝜑𝜆𝜆(𝑇𝑇)
𝑑𝑑𝑑𝑑

≃ 𝐶𝐶2
𝑇𝑇2

𝜑𝜑𝜆𝜆(𝑇𝑇)
𝜆𝜆

⇒ Δ𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑗𝑗 − 𝑇𝑇𝑖𝑖 ≈
1
𝜒𝜒𝑇𝑇
𝑟𝑟 �

𝜑𝜑𝜆𝜆(𝑇𝑇𝑗𝑗)
𝜑𝜑𝜆𝜆(𝑇𝑇𝑖𝑖)

− 1�
;  

𝜑𝜑𝜆𝜆 .𝜒𝜒𝜆𝜆𝑟𝑟 = 𝜒𝜒𝜆𝜆 = 𝑑𝑑𝜑𝜑𝜆𝜆(𝑇𝑇)
𝑑𝑑𝑑𝑑

≃ �𝐶𝐶2
𝜆𝜆𝜆𝜆
− 5� 𝜑𝜑𝜆𝜆(𝑇𝑇)

𝜆𝜆

⇒ Δ𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑗𝑗 − 𝑇𝑇𝑖𝑖 ≈
1
𝜒𝜒𝜆𝜆
𝑟𝑟 �

𝜑𝜑𝜆𝜆(𝑇𝑇𝑗𝑗)
𝜑𝜑𝜆𝜆(𝑇𝑇𝑖𝑖)

− 1�
(3.3) 

𝑒𝑒𝜑𝜑𝜆𝜆𝑖𝑖
𝜑𝜑𝜆𝜆𝑖𝑖

+
𝑒𝑒𝜑𝜑𝜆𝜆𝑗𝑗
𝜑𝜑𝜆𝜆𝑗𝑗

=
𝑒𝑒𝜑𝜑𝜆𝜆𝑖𝑖
𝜑𝜑𝜆𝜆𝑖𝑖

�1 +
𝜑𝜑𝜆𝜆𝑖𝑖
𝜑𝜑𝜆𝜆𝑗𝑗

𝑒𝑒𝜑𝜑𝜆𝜆𝜆𝜆
𝑒𝑒𝜑𝜑𝜆𝜆𝑖𝑖

� ≃
𝑒𝑒𝜑𝜑𝜆𝜆𝑖𝑖
𝜑𝜑𝜆𝜆𝑖𝑖

 �∀(𝜑𝜑𝜆𝜆𝑖𝑖 ,𝜑𝜑𝜆𝜆𝑗𝑗)/
𝜑𝜑𝜆𝜆𝑖𝑖
𝜑𝜑𝜆𝜆𝑗𝑗

<< 1� (3.4) 

Δ𝜆𝜆 = �𝜆𝜆𝑗𝑗 − 𝜆𝜆𝑖𝑖� > 𝑇𝑇𝜆𝜆𝑗𝑗
2

𝐶𝐶2
�
𝜆𝜆𝑖𝑖<𝜆𝜆𝑗𝑗

(3.5) 

𝑒𝑒𝑇𝑇
𝑇𝑇

∝
under
Wien′s
approx.

𝑇𝑇
𝐶𝐶2

𝜆𝜆
𝜑𝜑𝜆𝜆(𝑇𝑇)

= 1
𝑇𝑇.𝜒𝜒𝑇𝑇

, for   𝑒𝑒𝜑𝜑𝜆𝜆 ∝ �𝑓𝑓(𝜆𝜆) or 𝜀𝜀(𝜆𝜆)� (3.6) 
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3.1.2. Determination of best sequential wavelengths 

The previously established criteria allow to set up a wavelengths selection methodology. 
Nevertheless, as they are given in term of inequalities, it is not possible to know if the 
wavelengths choice is optimal or not. As the method used for the temperature estimation is 
based on the functional minimization through an OLS method, the idea is to select optimal 
wavelengths by minimizing the standard deviation of the estimated temperature. In the OLS 
method, the statistical properties of the parameters (3.2) are given by the variance-covariance 
matrix, from which the standard deviations 𝜎𝜎𝛽𝛽𝑖𝑖 of the estimated parameters and particularly of 
the temperature 𝜎𝜎𝑇𝑇 can be determined. The model (3.1) being non-linear, the approximate 
expression of the variance-covariance matrix of the OLS method is used, which is given for a 
parameter vector β = (T, a, b, c), under assumptions of an additive noise, non-correlated, 
identically distributed (zero mean and constant variance), by: 

  𝐜𝐜𝐜𝐜𝐜𝐜(𝑏𝑏) =

⎣
⎢
⎢
⎢
⎡𝜎𝜎𝑇𝑇

2 cov(𝑇𝑇,𝑎𝑎) cov(𝑇𝑇, 𝑏𝑏) cov(𝑇𝑇, 𝑐𝑐)
cov(𝑇𝑇,𝑎𝑎) 𝜎𝜎𝑎𝑎2 cov(𝑎𝑎, 𝑏𝑏) cov(𝑎𝑎, 𝑐𝑐)
cov(𝑇𝑇, 𝑏𝑏) cov(𝑎𝑎, 𝑏𝑏) 𝜎𝜎𝑏𝑏2 cov(𝑏𝑏, 𝑐𝑐)
cov(𝑇𝑇, 𝑐𝑐) cov(𝑎𝑎, 𝑐𝑐) cov(𝑏𝑏, 𝑐𝑐) 𝜎𝜎𝑐𝑐2 ⎦

⎥
⎥
⎥
⎤

= (𝑿𝑿𝒕𝒕𝑿𝑿)−1𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2    (3.7) 

𝑿𝑿 =
∂𝜑𝜑𝑖𝑖
∂𝛽𝛽𝑗𝑗

=

⎣
⎢
⎢
⎢
⎡
∂𝜑𝜑1
∂𝑇𝑇

∂𝜑𝜑1
∂𝑎𝑎

∂𝜑𝜑1
∂𝑏𝑏

∂𝜑𝜑1
∂𝑐𝑐

⋮ ⋮ ⋮ ⋮
∂𝜑𝜑𝑁𝑁
∂𝑇𝑇

∂𝜑𝜑𝑁𝑁
∂𝑎𝑎

∂𝜑𝜑𝑁𝑁
∂𝑏𝑏

∂𝜑𝜑𝑁𝑁
∂𝑐𝑐 ⎦

⎥
⎥
⎥
⎤
 

The sequential method consists in choosing the first optimal wavelength 𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜1 minimizing the 
standard deviation of the temperature, assuming that we perform only a monospectral 
measurement (thus with the only one unknown parameter T) (Figures 4 and 5). Note that this 
value does not correspond to the maximum of the Planck law. It can be shown that 
λopt1T ≈ 2 410 µm∙K and compared with the Wien law λmaxT ≈ 2 898 µm∙K [9]. 

Figure 4. Reduced sensitivity curves for unitary 
emissivity with MT(λ)=𝜑𝜑 T(λ) given by (3.1) and for 
T0 = 623 K. 

Figure 5. Standard deviation of T for unitary 
emissivity with σT given by (3.7) and β = 623 (just 
one wavelength and the parameter T). 
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The value is slightly shifted on the left and appears as a compromise solution between a large 
sensitivity and a good signal over noise ratio. This result shows the interest of the OLS method 
allowing to define an optimal wavelength for the temperature measurement, contrary to 
expression (3.1) that only takes into account the sensitivity aspect and gives for optimal 
wavelength λ = 0 because the relative uncertainty on the temperature is null for this value. 
Figure 5 shows that there is a unique wavelength, λopt1 = 3.87 µm, that minimizes the standard 
deviation σT(λ) (for monospectral measurements). The increasing of the standard deviation 
when the wavelength is decreasing for λ < λopt1 can be explained by the fact that the signal 
over noise ratio is decreasing for λ → 0. The increasing of the standard deviation for 
λ > λopt1 is due to the fact that the sensitivities of flux to the temperature ΧT (3.3) are decreasing 
with the wavelength (Figure 4). Indeed, for a monospectral measurement σT(λ) = 𝜒𝜒𝑇𝑇−1, which is 
similar to the relative uncertainty on the temperature eT/T (3.6). 
Then, to choose the value of the second filter λ1 is fixed to λopt1, and the shortest wavelength 
is sought (λopt21 ≈ 2.64 µm in Figure 6) that minimizes the local temperature standard deviation 
in the model TNL.Ta. The notation (cf. Section 4 for more details) TNL.Ta means that in (3.1) 
and (3.2) only the parameters T and a are considered (i.e. b = c = 0). λopt21 has been preferred 
to λopt22 since the latter is not in the detector spectral range and allows to reduce the working 
spectral range. Furthermore, note that at λ2 = λopt1, there is a vertical asymptote 
(σT → ∞) due to the fact that the numeric system to solve is ill-conditioned and leads to infinite 
uncertainties. There are two unknowns (T and a) but only one equation. For λ2 < λopt21 and 
λ2 > λopt22, the standard deviation σT(λ2) is increasing because the signal over noise ratio and 
the sensitivity to the temperature are decreasing, and for λopt21 < λ2 < λopt22, σT(λ2) is increasing 
because the criteria (3.5) is less and less respected. 

Figure 6. Standard deviation of T for unitary emissivity with λ1 = λopt1 fixed and λ2 free; σT given by 
(3.7) and β= (623; 1) (just one wavelength: λ2, and two parameters: T and a): Model (T;a). 

The same procedure is followed to get the third and the fourth wavelengths, which minimize 
the standard deviation of the temperature in the model (T,a,b,c). With this process, we finally 
obtain the following wavelengths set: λopt_seq = {1.67µm; 2.05 µm; 2.64 µm; 3.87 µm} with 
σT ≈ 4.0 K. Because of experimental constraints (availability of filters), the selected 
wavelengths filters are the following: λopt_seq = {2.00 µm; 2.35 µm; 2.85 µm; 4.00 µm} with 
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σT ≈ 2.6 K. These two wavelengths set shows that the sequential process is not optimal but 
presents the advantage of illustrating that it is important to carefully choose the different 
wavelengths for multispectral measurements. 

3.1.3.  Determination of global optimal wavelengths: Analogous Wien’s 
law for optimal wavelengths selection in mono-spectral and bi-
spectral methods 

The optimal wavelengths determination can be done using a global optimization algorithm such 
as “Nelder Mead” (NM), “Levenberg-Marquardt” (LM) or “Trust-Region” (TR)...  
For monospectral and bispectral (under assumption of grey body) measurements, it can be 
shown that the optimal wavelengths are defined by an analogous Wien law [9]. 
First, note that for the mono-spectral measurements the minimization of the relative error of 
the temperature can be linked to the minimization of the standard deviation of the temperature. 
Indeed, for mono-spectral measurements (one wavelength and one unknown parameter “T” 
(assumed constant and known emissivity)) from (3.7) and (6), we have: 

min
𝜆𝜆1
�𝜎𝜎𝑇𝑇(𝜆𝜆1)� ⇔ min

𝜆𝜆1
��𝜕𝜕𝜑𝜑1

𝜕𝜕𝜕𝜕
�
−1
𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛� ⇒

𝜕𝜕2𝜑𝜑(𝜆𝜆,𝑇𝑇)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

= 0 ⇒ 𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑇𝑇 = 𝐶𝐶2
6
≈ 2400𝜇𝜇𝜇𝜇.𝐾𝐾 = 𝐶𝐶𝑀𝑀𝑊𝑊  (7)

Thus, we see from (3), (6) and (7), that there is equivalence between minimizing the relative 
error on the temperature, maximize the flux sensitivity to the temperature, or minimize the 
standard deviation of the temperature. This last observation will allow us to generalize the 
method for determining the optimal wavelengths for bi-spectral and multi-spectral 
measurements. 
For bi-spectral measurements through Wien's approximation but without flux ratio (i.e. two 
wavelengths and two unknown parameters "{T,a}" in (3.1) and (3.7) but with Wien's 
approximation), it is possible to show analytically that the optimal wavelengths which minimize 
the standard deviation of the temperature(3.7), are defined by two laws (one for each 
wavelength) analogous to the Wien's law, such as: 

min
𝜆𝜆1,𝜆𝜆2

�𝜎𝜎𝑇𝑇(𝜆𝜆1,𝜆𝜆2)� ⇒ �
𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜1𝑏𝑏𝑏𝑏−𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑇𝑇 = 𝐶𝐶𝐵𝐵𝐵𝐵𝑅𝑅1

𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜2𝑏𝑏𝑏𝑏−𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑇𝑇 = 𝐶𝐶𝐵𝐵𝐵𝐵𝑅𝑅2
  (8) 

As in the case of mono-spectral measurements, it seems legitimate to extend these laws for 
fluxes defined by Planck's law. The equations to minimize being once again non-linear, then 
the approach will be similar as for (4), we will seek numerically the set of pairs of wavelengths 
�𝜆𝜆1,𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜, 𝜆𝜆2,𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜� that minimize the standard deviation 𝜎𝜎𝑇𝑇𝑖𝑖(𝜆𝜆1,𝜆𝜆2) of the temperature (calculated from

(3.7) with sensitivities𝑿𝑿evaluated at𝜷𝜷0 = (𝑇𝑇𝑖𝑖, 1)), then we will determine the law constants 
�𝐶̂𝐶𝐵𝐵𝐵𝐵𝑅𝑅1, 𝐶̂𝐶𝐵𝐵𝐵𝐵𝑅𝑅2� using a least squares method, such that: 

�𝐶̂𝐶𝐵𝐵𝐵𝐵𝑅𝑅1, 𝐶̂𝐶𝐵𝐵𝐵𝐵𝑅𝑅2� = arg min
𝐶̂𝐶𝐵𝐵𝐵𝐵
𝑅𝑅1,𝐶̂𝐶𝐵𝐵𝐵𝐵

𝑅𝑅2
∑ ��𝜆𝜆1,𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐶̂𝐶𝐵𝐵𝐵𝐵
𝑅𝑅1

𝑇𝑇𝑖𝑖
�
2

+ �𝜆𝜆2,𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐶̂𝐶𝐵𝐵𝐵𝐵

𝑅𝑅2

𝑇𝑇𝑖𝑖
�
2
� ⇒ �

𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜1𝑏𝑏𝑏𝑏−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 = 𝐶𝐶𝐵𝐵𝐵𝐵𝑅𝑅1 ≈ 1830.8𝜇𝜇𝜇𝜇.𝐾𝐾
𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜2𝑏𝑏𝑏𝑏−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 = 𝐶𝐶𝐵𝐵𝐵𝐵𝑅𝑅2 ≈ 4465.8𝜇𝜇𝜇𝜇.𝐾𝐾𝑖𝑖  (9)

A graphical representation of wavelengths minimizing standard deviation of the temperature 
(obtained numerically and for the Planck’s law) and those obtained with the laws (9) is given 
figure 7. 
The residues are not shown, but as in the mono-spectral case, the maximum error is of about 
10-4µm. An illustration of optimal wavelengths for mono-spectral and bi-spectral measurements
is shown in figure 8.
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Figure 7. Optimal wavelengths for bi-spectral 
measurements. Comparisons between 

wavelengths obtained numerically and from the 
laws (9) : 𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜,𝑘𝑘𝑏𝑏𝑏𝑏−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐶𝐶�𝐵𝐵𝐵𝐵

𝑅𝑅,𝑘𝑘 𝑇𝑇� . 

Figure 8. Illustration on Planck’s curves of 
optimal wavelengths for mono-spectral and bi-

spectral measurements. 

Note that the optimal wavelengths for bi-spectral measurements satisfy: 

Δ𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑏𝑏−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜2𝑏𝑏𝑏𝑏−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜1𝑏𝑏𝑏𝑏−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1.9
�𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜2

𝑏𝑏𝑏𝑏−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�
2
𝑇𝑇

𝐶𝐶2���������
Δ𝜆𝜆min

= 1.9Δ𝜆𝜆min (10) 

We can show [6, 9] that Δ𝜆𝜆min =
𝜆𝜆𝑗𝑗
2𝑇𝑇
𝐶𝐶2
�
𝜆𝜆𝑗𝑗>𝜆𝜆𝑖𝑖

 is the minimum distance between two wavelengths 

to avoid amplification of measurement errors on the temperature. 

3.1.4. Global optimal wavelengths selection for multispectral 
measurements 

- Optimal wavelengths for monospectral measurements: 𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 = 𝐶̂𝐶𝑀𝑀𝑀𝑀𝑅𝑅 ≈ 2 410 𝜇𝜇𝜇𝜇 ⋅ 𝐾𝐾 

- Optimal wavelengths for bispectral measurements: �
𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜1𝑏𝑏𝑏𝑏−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 = 𝐶𝐶𝐵𝐵𝐵𝐵𝑅𝑅1 ≈ 1 831 𝜇𝜇𝜇𝜇 ⋅ 𝐾𝐾
𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜2𝑏𝑏𝑏𝑏−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 = 𝐶𝐶𝐵𝐵𝐵𝐵𝑅𝑅2 ≈ 4 466 𝜇𝜇𝜇𝜇 ⋅ 𝐾𝐾

Otherwise, for “general” multispectral measurements, the minimization calculus of the standard 
deviation gives for the determination of optimal wavelengths by an unconstrained estimation, 
with 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ≈ 9 × 104𝑊𝑊 = 7 × 10−6 % of the Planck law maximum (equivalent to the value of 
the experimental noise), and β = (623;1;0;0) as nominal parameters vector: 

- For β = (T,a,b,c), we find: 𝛌𝛌𝒐𝒐𝒐𝒐𝒐𝒐_𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 = {2.53  ;   4.7 0  ;   8.87  ;   26.18} µ𝑚𝑚 and 𝜎𝜎𝑇𝑇 ≈ 0.07  𝐾𝐾
- For β = (T,a,b), we find: 𝛌𝛌𝒐𝒐𝒐𝒐𝒐𝒐_𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 = {2.67  ;   5.24  ;   12.57} µ𝑚𝑚 and 𝜎𝜎𝑇𝑇 ≈ 0.05  𝐾𝐾
- For β = (T,a), we find: 𝛌𝛌𝒐𝒐𝒐𝒐𝒐𝒐_𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 = {2.94  ;   7.17} µ𝑚𝑚 and 𝜎𝜎𝑇𝑇 ≈ 0.02  𝐾𝐾

For 𝛌𝛌𝒐𝒐𝒐𝒐𝒐𝒐_𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 = {2.94  ;   7.17} µ𝑚𝑚, Figure 9 shows that the minimum is unique (two symmetric 
solutions {𝜆𝜆1  ;   𝜆𝜆2} ≈ {2.94µ𝑚𝑚  ;   7.17µ𝑚𝑚}), and that these solutions are different but lead to 
better results than those obtain by sequential method �𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜1  ;   𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜22� ≈ {3.87µ𝑚𝑚  ;   7.22µ𝑚𝑚}. 
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Figure 9. Isovalues of standard deviation of T. 

Although this set of values are the best in terms of minimization of the standard deviation, 
performing measurements at these different wavelengths is difficult in practice because such 
a detector with a so wide spectral range does not exist. For this reason, we decide to choose 
the wavelengths only in the spectral range of the detector [1.5 µm - 5.5 µm]. If the global 
optimization with this constraint is performed, the results obtained are: 
- For 𝜷𝜷 = (𝑇𝑇,𝑎𝑎, 𝑏𝑏, 𝑐𝑐), it comes: 𝛌𝛌𝒐𝒐𝒐𝒐𝒐𝒐_𝒄𝒄𝒄𝒄𝒄𝒄_𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔−𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = {2.14  ;   3.39  ;   4.76  ;   5.50} µ𝑚𝑚 and 𝜎𝜎𝑇𝑇 ≈

0.32  𝐾𝐾
- For 𝜷𝜷 = (𝑇𝑇,𝑎𝑎, 𝑏𝑏), it comes: 𝛌𝛌𝒐𝒐𝒐𝒐𝒐𝒐_𝒄𝒄𝒄𝒄𝒄𝒄_𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔−𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = {2.43  ;   4.21  ;   5.50} µ𝑚𝑚 and 𝜎𝜎𝑇𝑇 ≈ 0.09  𝐾𝐾
- For 𝜷𝜷 = (𝑇𝑇,𝑎𝑎), it comes: 𝛌𝛌𝒐𝒐𝒐𝒐𝒐𝒐_𝒄𝒄𝒄𝒄𝒄𝒄_𝒔𝒔𝒑𝒑𝒑𝒑𝒑𝒑−𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = {2.93  ;   5.50} µ𝑚𝑚 and 𝜎𝜎𝑇𝑇 ≈ 0.03  𝐾𝐾

But the Wien approximation being better at short wavelengths, we will force ourselves to 
choose our wavelengths only in the spectral range corresponding to the increasing part of the 
Planck curve. In this context, the global estimation with constraint 𝜆𝜆 ∈ [1.5µ𝑚𝑚  ;   2898/𝑇𝑇 µ𝑚𝑚] 
gives: 
- For 𝜷𝜷 = (𝑇𝑇,𝑎𝑎, 𝑏𝑏, 𝑐𝑐), it comes: 𝛌𝛌𝒐𝒐𝒐𝒐𝒐𝒐_λ𝒎𝒎𝒎𝒎𝒎𝒎_𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔−𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = {2.03  ;   3.11  ;   4.15  ;   4.65} µ𝑚𝑚 and 
𝜎𝜎𝑇𝑇 ≈ 0.52  𝐾𝐾 

- For 𝜷𝜷 = (𝑇𝑇,𝑎𝑎, 𝑏𝑏), it comes: 𝛌𝛌𝒐𝒐𝒐𝒐𝒐𝒐_λ𝒎𝒎𝒎𝒎𝒎𝒎_𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔−𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = {2.32  ;   3.79  ;   4.65} µ𝑚𝑚 and 𝜎𝜎𝑇𝑇 ≈ 0.14  𝐾𝐾 
- For 𝜷𝜷 = (𝑇𝑇,𝑎𝑎), it comes: 𝛌𝛌𝒐𝒐𝒐𝒐𝒐𝒐_λ𝒎𝒎𝒎𝒎𝒎𝒎_𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔−𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = {2.82  ;   4.65} µ𝑚𝑚 and 𝜎𝜎𝑇𝑇 ≈ 0.03  𝐾𝐾 

Note that in both global estimation with constraints, the last wavelength is always the upper 
bound, which means that the best wavelength is probably out of the interval. 

4. Numerical validation of models for temperature measurement in the infrared
wavelength range

To validate the model, thousand noised fluxes are simulated through the Monte Carlo method 
(normal noise exhibiting the same level as standard deviation measured on the experimental 
thermographic images under the same conditions) (Tables 1 and 2) from four different 
variations/values of emissivity (or global spectral transfer function) (Figure 10): constant, linear, 
order 2 and Drude. We took care that the variations of order 2 and Drude models are significant 
on the IR spectral range of the study (and in agreement with the experimental behavior of 
different materials). Tables 1 and 2 show the results for the four filters chosen experimentally. 
The notation TNL means that the temperature is obtained from a "nonlinear least squares" 
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estimation using the regularized LM algorithm. TNL.Tabc (respectively TNL.Tab), means that 
we use (3.2) and the unknown parameters are (T,a,b,c) (resp. (T,a,b)). For TNL.Tab, the three 
shorter wavelengths are used. 

Figure 10. Emissivity variation/values used for numerical validation. The “chosen values” are the fixed 
or calculated values of simulated emissivity at the experimental wavelengths to have significant 
variations of emissivity compared with the linear variation. 

4.1. Simulations without noise 

λi (µm) = {2; 2.35; 2.85; 4} 
Texp = 623 K ; Radiance law: Planck 

Noise Emissivity Model T [K] Absolute Error 
[K] Relative Error [%] Sigma [K] Sigma [%] 

W
ith

ou
t 

Constant TNL.Tabc (4 bands) 623.00 0.00 0.00 - - 
TNL.Tab (3 bands) 623.00 0.00 0.00 - - 

Linear TNL.Tabc (4 bands) 623.00 0.00 0.00 - - 
TNL.Tab (3 bands) 623.00 0.00 0.00 - - 

Order 2 TNL.Tabc (4 bands) 623.00 0.00 0.00 - - 
TNL.Tab (3 bands) 608.52 14.48 2.32 - - 

Drude TNL.Tabc (4 bands) 636.91 13.91 2.23 - - 
TNL.Tab (3 bands) 641.01 18.01 2.89 - - 

Table 1. Simulations for estimating the temperature (without noise). 

As models TNL.Tabc and TNL.Tab do not use Wien approximation, no bias appears on 
estimated temperature except for emissivity variation of order 2 for TNL.Tab, and Drude for 
the models TNL.Tabc and TNL.Tab. The results in table 1 show that the model TNL.Tabc 
seems to be the better (lowest uncertainties). 
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4.2. Simulations with noise 

AVERAGE TEMPERATURE OF 1 000 ESTIMATES: λi (µm) = {2; 2.35; 2.85; 4}
Texp = 623 K; Radiance law: Planck; Noise: constant; Sigma Noise: 7.43*10-3 % (max of Planck law) 

Noise Emissivity Model T [K] Absolute Error 
[K] Relative Error [%] Sigma [K] Sigma [%] 

W
ith

 

Constant TNL.Tabc (4 bands) 623.02 0.02 0.00 1.13 0.18 
TNL.Tab (3 bands) 623.00 0.00 0.00 0.52 0.08 

Linear TNL.Tabc (4 bands) 623.01 0.01 0.00 0.70 0.11 
TNL.Tab (3 bands) 623.00 0.00 0.00 0.32 0.05 

Order 2 TNL.Tabc (4 bands) 623.02 0.02 0.00 1.05 0.17 
TNL.Tab (3 bands) 608.52 14.48 2.32 0.30 0.05 

Drude TNL.Tabc (4 bands) 636.91 13.91 2.23 0.74 0.12 
TNL.Tab (3 bands) 641.01 18.01 2.89 0.38 0.06 

Table 2. Monte Carlo simulations for estimating the temperature (with noise). 

Table 2 shows that it is impossible by the method TNL.Tabc to accurately estimate the 
temperature because the problem seems ill-posed. This observation is confirmed by the best 
results given by TNL.Tab in the case of emissivities ranging up to order 2, which shows that it 
is possible to regularize the problem by reducing the number of parameters. Nevertheless, it 
is important to note that the standard deviations of the estimations are significant, suggesting 
that it will be necessary to have lot of points (high spatial resolution allowing a local averaging) 
or to use larger integration times to increase the measurement accuracy. From these results, 
the TNL.Tabc model is retained for the estimation model for the experiments. 

5. Application to experimental thermography

5.1. Description of the experimental bench

The schematic diagram of the facility is shown in Figure 11. An oxidized cast iron sample on 
which “FT 25" is carved (its surface being varied, so it is for the emissivity) is placed in a tube 
furnace at a temperature of 623 K controlled by a PID with a great stability (negligible 
oscillations in temperature recording due to furnace regulation). The sample temperature is 
obtained using a thermocouple placed on its rear face. The spatial radiative flux emitted by the 
sample is measured through a high sensitive broadband InSb infrared matrix camera working 
in the spectral range [1.5 µm - 5.5 µm]. Four monochromatic filters: 
𝛌𝛌𝒆𝒆𝒆𝒆𝒆𝒆 = {2  ;   2.35  ;   2.85  ;   4} µ𝑚𝑚 are mounted in the filters wheel of this camera to measure 
the emitted flux coming from the sample at four different wavelengths. The signal is digitized 
through a 14 bits Analog/Digital card. Each pixel is associated to a DL corresponding to the 
spectral radiance of a surface area of the sample. The camera has previously been calibrated 
in the temperature range [573 K – 673 K] using a 4' x 4' extended area blackbody.  

261/339



METTI 8 Advanced School  Ile d’Oléron, France 
Thermal Measurements and Inverse Techniques  Sept. 24th – Sept 29th, 2023 

Tutorial 12: Optimal Wavelength Selection Criteria for Multispectral Pyrometry – 
page 14 

Figure 11. Facility for IR measurements. 

5.2. Measurement methodology, data processing and results 

Using a tubular furnace, the sample is heated at three different temperatures levels 
{T1 = 573 K; T2 = 623 K; T3 = 673 K}. For each temperature, a recording of 1 000 images for 
each filter is performed. Before each acquisition, great care is taken to check whether thermal 
equilibrium is reached. To get free of the reflection through the non-blackbody sample that is 
not negligible at this level of temperature due to presence of the hot furnace walls in this 
vicinity, we use the average image made with 4 filters at 573 K and 673 K to correct the existing 
offset between our measurements at these two temperatures and the flux that a blackbody at 
these same temperatures would emit. Calling 𝑀𝑀𝜆𝜆𝑖𝑖

exp�𝑇𝑇𝑗𝑗� the experimental heat flux measured
for each pixel at the wavelengths 𝜆𝜆𝑖𝑖 and at the temperature 𝑇𝑇𝑗𝑗, and 𝐾𝐾𝑖𝑖 a variable to correct the 
offset between the measured flux and the blackbody flux, we have a set of 8 equations with 8 
unknowns (the four couples (𝜀𝜀𝑖𝑖  ;   𝐾𝐾𝑖𝑖)) to solve. The system is as follows: 

𝑀𝑀𝜆𝜆𝑖𝑖
exp�𝑇𝑇𝑗𝑗� = 𝜀𝜀𝑖𝑖𝑀𝑀𝜆𝜆𝑖𝑖

𝑜𝑜 + 𝐾𝐾𝑖𝑖,∀𝑖𝑖 ∈ ⟦1  ;   4⟧    𝑎𝑎𝑎𝑎𝑎𝑎    ∀𝑗𝑗 ∈ {1  ;   3}

⇔

⎩
⎪⎪
⎨

⎪⎪
⎧𝑀𝑀𝜆𝜆1

exp(𝑇𝑇1) = 𝜀𝜀1𝑀𝑀𝜆𝜆1
𝑜𝑜 + 𝐾𝐾1

⋮
𝑀𝑀𝜆𝜆4
exp(𝑇𝑇1) = 𝜀𝜀4𝑀𝑀𝜆𝜆4

𝑜𝑜 + 𝐾𝐾4
𝑀𝑀𝜆𝜆1
exp(𝑇𝑇3) = 𝜀𝜀1𝑀𝑀𝜆𝜆1

𝑜𝑜 + 𝐾𝐾1
⋮
𝑀𝑀𝜆𝜆4
exp(𝑇𝑇3) = 𝜀𝜀4𝑀𝑀𝜆𝜆4

𝑜𝑜 + 𝐾𝐾4

(3.8) 

The 8 unknowns (𝜀𝜀𝑖𝑖   ;   𝐾𝐾𝑖𝑖) (for each pixel) are estimated by a regularized LM ordinary least 
square method. Using the 𝐾𝐾𝑖𝑖 (assuming the reflected part of the heat flux as constant in the 

Camera

Tubular 
furnace

Sample
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temperature range 573 K - 673 K), our experimental flux can be corrected to get rid of the 
reflection. Finally, the experimental flux is corrected for each pixel through the following 
relation: 

𝜑𝜑𝜆𝜆𝑖𝑖
exp�𝑇𝑇𝑗𝑗� = 𝑀𝑀𝜆𝜆𝑖𝑖

exp�𝑇𝑇𝑗𝑗� − 𝐾𝐾𝑖𝑖, ∀𝑖𝑖 ∈ ⟦1  ;   4⟧    𝑎𝑎𝑎𝑎𝑎𝑎    ∀𝑗𝑗 ∈ ⟦1  ;   3⟧ (3.9) 

The aim is now to estimate the temperature field of the sample when the furnace is at 
T2 = 623 K using adjusted flux emitted by each pixel. For this, we will find for each pixel the 
value of temperature T that minimizes the cost function.  
Figures 12-15 show the averaged (1 000 Images) thermographic images recorded by the 
camera through the four monochromatic filters 𝛌𝛌𝒆𝒆𝒆𝒆𝒆𝒆 = {2  ;   2.35  ;   2.85  ;   4} µ𝑚𝑚. The 
inscription "FT25" is indistinguishable at 2 μm due to the low flux emitted but appears more 
and more clearly up to 4 μm. The result of the temperature estimation by inversion of Planck 
law (assuming unit emissivity) is given in Figure 16 for 4 μm wavelength. As expected, we note 
that this simple estimation assuming a uniform emissivity does not correct the emissivity field 
because the pattern "FT25" is still visible on the calculated temperature field. Moreover, the 
estimation uncertainty of temperature is large (experimental temperature is about 623 K), while 
the estimated temperature is about 587 K (approximately 6 % uncertainty or 40 K) with a 
standard deviation of about 1.5 K. Finally, Figure 17 shows the result of the estimated 
temperature (of about 625 K) field given by the TNL.Tabc model (minimization of the cost 
function). We note that the pattern has totally disappeared and that the temperature uncertainty 
is about 2 K (0.3 %) with a standard deviation of 4 K. We have tried different models but the 
best results are given by the model TNL.Tabc, which allows us to take into account the 
emissivity variation over the wavelength range [2 µm – 4 µm]. 

Figure 12. Flux 2 µm. 
Figure 13. Flux 2.35 µm. 
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Figure 14. Flux 2.85 µm. Figure 15. Flux 4 µm. 

Figure 16. Estimated temperature: TCN 4 µm. Figure 17. Estimated temperature: Tabc. 

6. Conclusion

First, the results given by the unbiased model TNL.Tabc (using fluxes without Wien 
approximation and without fluxes ratio) and summarized in Table 2 are very satisfactory for 
emissivity variations of order between 0 and 2 (Drude model is a more difficult case). The 
inverse problem being numerically ill-conditioned, if the relative variation of the emissivity (or 
global spectral transfer function, including the emissivity) is known, it is preferable to use the 
lowest number of parameters allowing to model emissivity variations. However, in the absence 
of a priori knowledge about the emissivity, the TNL.Tabc model seems to be the best 
compromise. 
Next, two different methods for selecting "optimal" wavelengths have been proposed: one 
through a sequential procedure (not optimal) and the other based on a global minimization with 
constraints which gives the best results. Although the iterative procedure is less efficient than 
the global minimization in term of temperature standard deviation, it presents the advantage 
to show the important of the choice of the different wavelengths.  
Furthermore, the experimental results obtained using the TNL.Tabc model from the filters 
available experimentally 𝛌𝛌𝒆𝒆𝒆𝒆𝒆𝒆 = {2  ;   2.35  ;   2.85  ;   4} µ𝑚𝑚 (close to theoretical optimal filters 
𝛌𝛌𝒐𝒐𝒐𝒐𝒐𝒐 = {2.03  ;   3.11  ;   4.15  ;   4.65} µ𝑚𝑚) are also very encouraging with an uncertainty of about 
2K (0.3 %) and a standard deviation of 4 K.  
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To finish, some criteria allowing to not amplify the uncertainty on the measurements have been 
presented, it has also been shown that there is equivalence between minimizing the relative 
error on the temperature, maximizing the flux sensitivity to the temperature, or minimizing the 
standard deviation of the temperature. Furthermore, it has been shown that the wavelengths 
that minimize the standard deviation of the estimated temperature in monospectral and 
bispectral methods (without the Wien approximation, i.e., for a Planck law) can be determined 
by an analogous displacement Wien’s law. 
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Abstract. The estimation of model unknown parameters in a model through
an inverse problem procedure enables an increase in the reliability of the model
predictions. Such approach requires defining an experimental campaign to obtain
observations of the physical phenomena. However, the accuracy of the estimated
parameters strongly depends on the quality of the experimental data. The design of
experiments enables the search for the optimal measurement plan that ensures the
highest degree of accuracy in parameter estimation. The objective of this tutorial
is to introduce some tools for searching the optimal experiment design. It enables
answering practical questions such as: what type of measurement techniques to ap-
ply? what are the positions and numbers of sensors? What is the starting day and
duration of the experimental campaign?

moving

heat

current

Fort Boyard

La Rochelle

METTI8

optimal METTI's 

boat trajectory

Introductory example: It is well known that Fort Boyard creates a temperature gradient
in the sea between La Rochelle and Ile d’Oléron, France. This current moves around
the castle according to the sea tides. The METTI 8 scientific committee aims at esti-
mating the magnitude of this temperature gradient. To accomplish this, they sail with a
boat equipped with sensors capable of measuring the sea temperature. Starting from Ile
d’Oléron’s harbor, the question is: why is the trajectory of the boat, illustrated in white
dots, the optimal route to estimate the magnitude of the temperature gradient with the
highest precision? (this story is purely invented but the scientific question is real.)
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1 Introduction

Unknown parameters of a model can be determined by solving a parameter estimation prob-
lem. The general procedure is illustrated in Figure 1. Such procedure requires an observation,
i.e. a measurement of a physical phenomena (temperature, heat flux, moisture content, etc.).
It also needs a model which depends on the unknown parameters. Given a value of such
parameters, the model can predict the physical phenomena. The unknown parameter are
retrieved by minimizing the differences, denoted as cost function, between model predictions
and observations.
As noted in Figure 1, an experimental design is defined to obtain observations of the phys-
ical phenomena. The measurements are obtained by a numbers of sensors, placed at given
locations, that monitored the phenomena during a certain time horizon. Some examples of
measurement are given in [?, ?, ?]. In these articles, the experimental observations used to
solve the parameter estimation problem are provided without any justification for the cho-
sen design. In [?], it can be remarked that authors discuss the influence of the number and
location of sensors on the accuracy of the estimated properties of a wood fiber material.
Therefore, an interesting question follows: How to define the experimental design? And more
precisely, how to define the experimental design to ensure the maximum accuracy of the
estimated parameters? Such design is denoted by Optimal Experiment Design (OED). The
word “optimal” is used in the sense that it maximizes the accuracy of the estimates. The
objective of this tutorial is to introduce some tools to search OED and discuss the quality of
measurements. It enables to answer practical questions such as: what type of measurement
techniques to apply? what are the positions and numbers of sensors? what is the starting
day and duration of the experimental campaign?
This tutorial is mostly based on three references:

• the early and pedagogical work from Beck Parameter Estimation in Engineering and
Science [?],

• the work from Ucinski Optimal Measurement Methods for Distributed Parameter Sys-
tem Identification with a more statistical and partial derivative point of view [?],

• the work from Pronzato and Pázman having a state-space representation point of
view [?],

The knowledge on inverse problem framework and particularly the computation of sensitivity
coefficients is an important prerequisite.
The structure of the tutorial is the following. The methodology to search the OED is intro-
duced in Section 2. Then, simple examples are introduced in Section 3 for practical applica-
tions. Some complementary remarks to go further on the subjects and general conclusion are
provided in Sections 5 and 6.

2 Searching the Optimal Experiment Design

2.1 Experiment Design

First, the experimental design is defined. An example of experimental design is illustrated
in Figure 2. Assume a slab which temperature varies according to space, time and some
unknown parameters. To retrieve the latter, the slab is submitted to a heat flux density
on one side. The rear face is maintained at a certain temperature. The temperature can
be recorded by sensors positioned in the slab. The physical phenomenon of transfer occurs
through a spatial domain (like a porous media) denoted as Ωx ⊂ R 3 and the temporal one,
denoted as Ω t ⊂ R+.
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Figure 1: Classical procedure to solve parameter estimation problem.

The experimental design includes M sensors where χn is the position of sensor n . We denote
by Ωχ the set of possible sensor positions, which element is:

χ =
(
χ 1 , . . . , χM

)
∈ Ωχ . (1)

Note that Ωχ ⊂ RM
+ .

Depending on the defined time acquisition, the measurement are obtained for a discrete time
grid. The set of time observations is written as Ω τ , which element is:

τ =
(
τ 1 , . . . , τ I

)
∈ Ω τ , (2)

where τ k is the time when measurement k is obtained. We have Ω τ ⊂ R I
+ .

In the experimental design, several conditions can be controlled or forced by the investigator.
As illustrated in Figure 2, the control (also called command or input) variables can be the
forcing conditions (ambient air temperature on the rear face, the incident heat flux density,
etc.) and their time variations (signal shape, frequency, amplitude, etc.). In some cases, it is
possible to control some physical parameters such as thermophysical properties, surface trans-
fer coefficients, etc. Thus, we define the set of controllable parameters of the measurement
plan by Ωu , which element is:

u =
(
u 1 , . . . , uU

)
∈ Ωu , (3)

where u ` is one of the U variables which is possible to control and modify in the experiment.
In the end, the measurement plan or experimental design π includes (i) the number of sensors
and their positions, (ii) the observation time grids for each sensor and (iii) the control variables
of the experiments. Thus, the measurement plan is defined by the following set:

Ωπ = Ωχ ∪ Ω τ ∪ Ωu ⊂ RM + I + U , (4)

which one element is given by:

π =
(
χ , τ , u

)
∈ Ωπ . (5)

Once the experiment is done, we obtain by measurement an observable y defined as:.

y : Ωπ −→ Ω obs (6a)(
χ , τ , u

)
7−→ y

(
χ , τ , u

)
, (6b)
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where Ω obs ⊂ RM + I is the co-domain of the observable data y . In the end, the measurement
plan provides a total of D = M + I discrete experimental measurements. For heat
conduction problems, the observable field corresponds for instance to temperature, water
mass content or heat flux. The interested reader may refer to Figure 3 for the representation
of the mathematical mapping diagrams involved in the experimental campaign.

slab

insulated

heat �ux density
rear temperature

Model

parameters
unknown

sensor position ?

magnitude ?

?frequency

value ?

Figure 2: Example of a measurement plan for the estimation of unknown parameters in a
material. The parameters that can be included in the measurement plan are highlighted in
red color.

Direct model 

simulation

data 

acquisition
control

variables

sensor

position
unkown 

parameters

experimental 

design

model 

predictions

measurement 

plan

experimental 

observation

Figure 3: Diagram of the mapping involved in the experimental campaign and the direct
problem simulation.

2.2 Brief recall on parameter estimation problem

Once the observable y is hold, the parameter estimation problem can be solved. The unknown
parameters are denoted by p . A total of N parameters are unknown so that the parameter
domain is Ω p ∈ RN . One may have a priori knowledge on the unknown parameters. The
confidence in this a priori value can be important. These values are generally used as first
guesses in the algorithm employed to solve the inverse problem and in the search of OED. The
estimates of the unknown parameters p̂ are determined by solving the following minimization
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problem:

p̂ = arg min
p∈Ω p

J(p ) , (7)

where J is the so-called cost function. It corresponds to the difference between the direct
problem solution T and the experimental observation of the phenomenon y . Considering the
Least Square Estimator, it is mathematically defined by:

J(p ) =
M∑
n=1

I∑
k=1

(
T
(
χn , τ

k , u , p
)
− y

(
χn , τ

k , u
))2

, (8)

where T is the prediction of the physical phenomena computed using a model. It is mathe-
matically defined by:

T : Ωπ × Ω p −→ Ω dir (9)(
χ , τ , u ,p

)
7−→ T

(
χ , τ , u ,p

)
. (10)

The prediction T can be obtained as a solution of any model. It can be formulated using partial
or ordinary differential equations, as well as very simple approach such as polynomials. The
solution of the model can be obtained by numerical or analytical approaches, depending on
the nature of the equations.
Last, the sensitivity coefficients can be computed to evaluate how the variation in the model
parameters affects the model predictions. The sensitivity related to an individual parameter
p is defined as the partial derivative of the model output and called the sensitivity coefficient
X p [?]:

X p : Ωπ × Ω p −→ Ω dir (11a)(
χ , τ , u ,p

)
7−→ ∂T

∂p
. (11b)

High values of X p indicate that T is more sensitive to p , i.e., small changes in p cause large
changes in the model output. The computation of X p can be performed either through the
direct differentiation of model–governing equations [?], using the finite difference approxima-
tions or complex step differentiation [?]. Note that a scaled version of the sensitivity coefficient

can be defined as
σ p
σ

∂T

∂p
with σ p the uncertainty on a priori parameter and σ the measure-

ment uncertainty. Last, a diagram of the mathematical mapping corresponding to the direct
problem simulation is given in Figure 3.

2.3 Optimal experiment design

By analyzing the diagram in Figure 3, it can be noted that the direct problem solution
is influenced by the experimental design π . It means that the choice of the experimental
configuration directly impacts the parameter estimation. Thus, one may ask the following
question: is it possible to define an optimal experiment design ensuring the estimation of the
unknown parameters with maximum accuracy? The answer to this question corresponds to
search for the optimal experiment design (OED).
In the analysis of optimal experiments for the estimation of unknown parameters, we define
the normalized Fisher information matrix:

F : Ω dir × Ω dir −→ M
(
R , N , N

)
, (12a)(

X p i , X p j

)
7−→

[
F i j

]
, ∀

(
i , j

)
∈
{

1, . . . , N
} 2

, (12b)
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where

F i j =
1

M I

M∑
n=1

I∑
k=1

σ 2
p

σ
(
χn , τ k

) 2 X p i

(
χn , τ

k , u ,p
)
X p j

(
χn , τ

k , u ,p
)
, (13)

where σ is the observations uncertainty related to sensor χn and measurement obtained at
time τ k . The matrix F characterizes the total sensitivity of the system. If the accuracy of
the measurement is low, then the term of the matrix is high, indicating a good sensitivity of
the problem. The term 1

M I is introduced to scale each term of the matrix. If this term is not
introduced, then the more sensors and the longer is the time measurement, the better will be
the sensitivity of the problem.
The quality index, so-called D–optimum criterion Ψ, is used to assess the accuracy of the
estimated unknown parameters:

Ψ : M
(
R , N , N

)
−→ R+ , (14a)

F 7−→ det
(
F
)
. (14b)

Note that a theoretical justification as well as interesting discussions on the choice of the
quality index (14a) are provided in [?, ?].
The Optimal Experiment Design, which is the experimental configuration ensuring maximum
accuracy when estimating the unknown parameters, can be defined by the measurement plan
verifying π ◦ :

π ◦ = arg max
π ∈Ωπ

Ψ(π ) . (15)

1. Measurement 

plan

model prediction

2. Direct model

sensitivity coe�cients

Fisher matrix

3. Quality of design

D-optimum criterion

4. Optimal 

Experiment 

Design (OED)
Experiments

Parameter 

estimation problemDetermining the OED

Figure 4: Illustration of the procedure to search for the optimal experiment design.

The different steps to determine the OED are illustrated in Figure 4. The first one is to define
the measurement plan by setting the control variables, the number of sensors and the data
acquisition. The second step is to define a numerical strategy to compute the direct model
prediction and the sensitivity coefficients, given a value of the unknown parameter. Third step
aims at computing the Fisher matrix and D-optimum criterion, used to evaluate the quality
of the experiment design. Finally, the issue is to find the optimal plan. From a practical point
of view, there is generally no analytical solution to Eq. (15). Thus, two strategies can be
employed. The first one, is the so-called exhaustive search (or brutal force) which may lead to
a local maximum. We define a set for the measurement plan Ωπ , i.e. a domain of variation
for the sensor positions χ , the time grid of observation τ for the controllable parameters u .
Then, we compute the criterion Ψ for each element of the given set of measurement plan Ωπ to
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find its maximum. The alternative strategy is to consider Eq. (15) as an optimization problem
and use suitable algorithm to find the maximum. In the end, when the OED is determined, the
experimental campaign can be carried to generate the measurement and solve the parameter
estimation problem.
An important remark concerns the dependency of the criterion Ψ according to the unknown
parameters. One understands that the computations require an a priori value of parameter
p apr , since the inverse problem is not solved and the unknown parameter is not determined
yet.

3 Practical applications

In the followings, practical and simple examples are proposed to search for optimal experiment
design.

3.1 Example 1. Steady state model, measurement plan: sensors positions

A simple model is considered to introduce the search of the OED. In steady state condition
the temperature in a slab is approximated by a first order polynomial. The model can be
written as:

T
(
x , p 1 , p 2

)
= p 1 + p 2 ·x , x ∈

[
0 , 1

]
,

{
p 1 , p 2

}
∈ R 2 , (16)

where x ∈
[

0 , 1
]
is the space domain where sensors can be placed and

{
p 1 , p 2

}
∈ R 2 are

the N = 2 unknown parameters. Several observations can obtained by placing temperature
sensors at different positions in the space domain, to solve the parameter estimation problem.
The issue is to search the OED in terms of two sensor positions.
step 1. We assume M = 2 sensors at the positions χ 1 and χ 2 respectively. The measure-
ment plan is defined by:

Ωπ =
{
χ 1 , χ 2

}
, ∀

(
χ 1 , χ 2

)
∈
[

0 , 1
] 2
, (17)

so each sensor can be placed in any part of the slab. It is assumed that there is no controllable
parameters Ωu = ∅ and that the measurement is performed for one unique time (I = 1).
step 2. We compute the sensitivity coefficients of the two parameters p 1 and p 2 (for all
spatial variable x):

X p 1

(
x , p 1 , p 2

)
=

∂T

∂p 1
= 1 , X p 2

(
x , p 1 , p 2

)
=

∂T

∂p 2
= x . (18)

On one hand, the sensitivity of the model to the parameter p 1 is invariant with the sensor
position. In other words, the estimation of this parameter is independent to the measurement
plan. On the other hand, the sensitivity function for parameter p 2 increases with the sensor
position. The sensitivity is maximum at the maximum value of x .
step 3. We compute the D-optimum criterion. Considering σ = σ p = 1 , the Fisher
matrix is given by:

F =
1

2

(
2 χ 1 + χ 2

χ 1 + χ 2 χ 2
1 + χ 2

2

)
,

and the criterion:

Ψ = det F =
(
χ 1 − χ 2

) 2
.

Here, the Fisher matrix F and the criterion Ψ do not depend on the parameter p 1 and p 2.
Thus, the determination of the OED is independent of the a priori knowledge on the unknown
parameters.
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step 4. Figure 5 gives the variation of the criterion with the position of the two sensors. It
is maximum for the two following measurement plan:

π ◦ =
{
χ ◦1 = 0 , χ ◦2 = 1

}
,

π ◦ =
{
χ ◦1 = 1 , χ ◦2 = 0

}
.

Therefore, to estimate parameters p 1 and p 2 with maximum accuracy, the sensor has to be
positioned at each extremity of the space domain

[
0 , 1

]
.
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Figure 5: Variation of the D-optimum criterion according to the two sensors positions χ 1 and
χ 2 (a) and for the particular case χ 2 = 1 − χ 1 (b).

3.2 Example 2. Time dependent model, measurement plan: control vari-
ables

The following transient model is considered to represent the temperature in a slab according
to time:

T
(
t , p 1

)
= T 0 + p 1

(
u 1 sin

(
2π u 2 t

)
− 1

)
, t ∈

[
0 , 1

]
, p 1 ∈ R ,

where p 1 is the unknown parameter (N = 1). u 1 ∈
[

0.5 , 4
]
and u 2 ∈

[
0.1 , 2

]
are the

control variables, corresponding to the amplitude and frequency of the imposed signal. The
objective is to determine the optimal signal to determine p 1 with maximum accuracy. It is
assumed that I = 101 measurements are performed with a time step ∆τ = 0.01 withM = 1
sensor.
step 1. The measurement plan is defined by:

Ωπ =
{
u 1 , u 2

}
, ∀

(
u 1 , u 2

)
∈
[

0.5 , 4
]
×
[

0.1 , 2
]
,

so the amplitude of the signal can be controlled between 0.5 and 4 while the frequency between
0.1 and 2. The model does not vary with space, so the sensor position design is null Ωχ = ∅ .
The time acquisition is not part of the OED investigations.
step 2. We compute the sensitivity coefficients of the parameter p 1 :

X p 1

(
t
)

=
(
u 1 sin

(
2π u 2 t

)
− 1

)
,

which is independent on the unknown parameter.
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step 3. We compute the D-optimum criterion. Considering σ = σ p = 1 , the Fisher
matrix is given by:

F =
1

I

I∑
k=1

(
u 1 sin

(
2π u 2 k∆τ

)
− 1

) 2
.

Since there is only one parameter, the criterion is given directly by the Fisher matrix:

Ψ =
1

I

I∑
k=1

(
u 1 sin

(
2π u 2 k∆τ

)
− 1

) 2
.

step 4. The OED is searched using the exhaustive strategy with 100 values of both variables
u 1 and u 2 in their respective domain of definition

[
0.5 , 4

]
and

[
0.1 , 2

]
. Figure 6 gives

the variation of the criterion with two control variables. It is maximum for the two following
measurement plan:

π ◦ =
{
u ◦1 = 4 , u ◦2 = 0.89

}
.

In this example, the determination of the OED is independent of the a priori knowledge on
the unknown parameter p 1 . It is also interesting to note that the amplitude of the signal u 1

has to be maximal to determine p 1 with accuracy.
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Figure 6: Variation of the D-optimum criterion according to the two control variables u 1 and
u 2 (a) and for the particular case where u 1 is set to the OED value (b).

Remark 1: Continuous approach

When measurements are carried out continuously over time, i.e. with a constant (small) time
step acquisition, it is possible to formulate the D-optimum criterion as:

Ψ =

∫ 1

0
X 2
p 1

dt ,

which gives:

Ψ =
−1

4π u 2

(
− 2u 2

1 π u 2 + u 2
1 cos

(
2π u 2

)
sin
(

2π u 2

)
− 4π u 2 − 4u 1 cos

(
2π u 2

)
+ 4u 1

)
.

Such equation can be solved analytically (by looking at the first and second derivatives)
according to the control variables to find the optimal value of u ◦1 and u ◦2 .
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�

Remark 2: Verification of the accuracy of the estimates according to the measurement plan

The impact of the measurement plan on the accuracy of the estimates can be evaluated by
generating synthetic experimental data. For this, the following procedure is adopted: (i) we
numerically generate 10 6 observations y using the direct problem model and adding a noise
of 0.1 magnitude, generated with a normal distribution. The measurements are produced for
two measurement plans, i.e two values of the control variables u 1 and u 2 . The first one is
the OED π = π ◦ while the second has a D-optimum criterion equals to 5% of the OED one.
For the latter, the control variables are π =

{
u 1 = 4 , u 2 = 0.1

}
. Then (ii) the parameter

p 1 is estimated using the synthetic observations. The accuracy of the estimated parameters
with the real ones is analyzed as a function of the measurement plans. Figure 7 presents the
probability distribution of the estimates. It can be remarked that the standard deviation in
the estimation of the parameter is smaller by one order for the OED measurement plan.

(a) (b)

Figure 7: Probability distribution of the estimate p̂ 1 for 10 6 synthetic observations sampled
for OED measurement plan (a) and for a plan where the D-optimum criterion equals 5% of
the OED one (b).

�

3.3 Example 3. Heat diffusion equation, measurement plan: sensor posi-
tion

Considering the following model of heat transfer in a slab:

∂T

∂t
− p 1

∂ 2T

∂x 2
= 0 ,

where p 1 is the unknown diffusivity. The following boundary and initial conditions are defined:

T = T̄ , x =
{

0 , L
}
,

T = T̄ + T 0 sin
(
λx
)
, t = 0 , λ =

π

L
.

Tutorial 13: Optimal Experiment Design for inverse heat conduction problem - page 11
277/339



METTI 8 Advanced School
Thermal Measurements and Inverse Techniques

Ile d’Oléron, France,
Sept.24th - Sept. 29th, 2023

For this specific case, an analytical solution exists:

T
(
x , t , p 1

)
= T̄ + T 0 exp

(
− p 1 λ

2 t
)

sin
(
λx
)
,

defined for x ∈
[

0 , L
]
and t ∈

[
0 , t f

]
. The optimal experiment design is searched in terms

of sensor position. The number of measurements is set with a time step ∆τ .
step 1. The measurement plan is defined by the position of the sensor:

Ωπ =
{
χ
}
, ∀χ ∈

[
0 , L

]
.

The time acquisition is not part of the OED investigations.
step 2. We compute the sensitivity coefficients of the parameter p 1 :

X p 1

(
x , t , p 1

)
= −T 0 λ

2 t exp
(
− p 1 λ

2 t
)

sin
(
λx
)
.

step 3. We compute the D-optimum criterion. Considering σ = σ p = 1 , the Fisher
matrix is given by:

F =
1

I

I∑
k=1

T 2
0 λ

4 k 2 ∆τ 2 exp
(
−2 p 1 λ

2 k∆τ
)

sin 2
(
λχ
)
.

After analytical computations, the D-optimum criterion is:

Ψ = f( I )
(

cos 2
(
λχ
)
− 1

)
, (19a)

f( I ) = exp(2 p1λ2 ∆τ)T 2
0 λ

4 ∆τ2

(
I2 exp(−2 p1λ2 ∆τ (I − 1)) + 2 I exp(−2 p1λ2 ∆τ (I − 1))

(19b)

− 2 I2 exp(−2 p1λ2 ∆τ I) + exp(−2 p1λ2 ∆τ (I − 1))− exp(2 p1λ2 ∆τ) (19c)

− 2 I exp(−2 p1λ2 ∆τ I) + I2 exp(−2 p1λ2 (I + 1) ∆τ) + exp(−2 p1λ2 ∆τ I)− 1

)
(19d)

·
(
I
(

exp(2 p1λ2 ∆τ)− 1
) 3
)−1

(19e)

step 4. In this particular case, the OED problem has an analytical solution. In the interval
χ ∈

[
0 , L

]
, the criterion is maximum for:

χ ◦ =
π

2λ
=

L

2
. (20)

This results is independent on the a priori value of the unknown parameter p1 . The readers
are invited to verify this results using an exhaustive (or maximization) strategy. For numerical
applications, the following values are used p 1 = 2 · 10−3 , T̄ = 10 , T 0 = 5 , ∆τ = 10−2

and L = 0.1 . Figure 8(a) presents the exhaustive search of the OED for 100 values of the
sensor position in

[
0 , L

]
. Figure 8(b) shows that the optimal position corresponds to the

points of higher magnitude of temperature.

Remark 3: Considering the number of time acquisition in the measurement plan

The measurement plan can be defined by the number of time acquisition of the observation:

Ωπ =
{
I
}
, ∀ I ∈ N , (21)
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Figure 8: Variation of the D-optimum criterion according to the sensor position χ (a) and
variation of the model prediction according to space and time (b).

for a sensor placed at the optimal location χ = L
2 . Results from Eq. (19a) are true for this

measurement plan. The maximization of the D-optimum criterion can be investigated using
the brutal force strategy for 10 3 values of I in the interval

[
1 , 10 3

]
. Results are illustrated

in Figure 9(a) and the optimal number of data acquisition is I ◦ = 86. An important point
is that function f( I ) in Eq. (19a) varies with the the parameter p 1 . Thus, the OED depends
on the a priori value as shown in Figure 9(b).
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Figure 9: Variation of the D-optimum criterion according to the number of time acquisition
I (a) and optimal number of acquisition with the a priori value of the unknown parameter
(b).

�
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3.4 Example 4. Time dependent model, measurement plan: sensor posi-
tion and time horizon

The following transient model is considered to represent the temperature in a slab according
to time:

T
(
x , t , p 1 , p 2

)
= p 1

x 2

H 2

(
1 − x

H

)
exp
(
− p 2 t

)
, (22)

t ∈
[

0 , τ f

]
, x ∈

[
0 , H

]
,
(
p 1 , p 2

)
∈ R 2

∗ , (23)

where
(
p 1 , p 2

)
are the unknown parameters (N = 2). ConsiderM = 1 sensor to be placed

in the slab. The objective is to determine the optimal sensor position χ and the time horizon
τ f of the experiments. It is assumed that measurements are monitored with a constant time
step ∆τ so that τ f = ∆τ · ( I − 1 ).
step 1. The measurement plan is defined by:

Ωπ =
{
χ , τ f

}
, ∀

(
χ , I

)
∈
[

0 , H
]
×
{

1 , . . . , 100
}
, (24)

so that the sensor position and number of measurement I can be chosen in the experimental
design.
step 2. We compute the sensitivity coefficients for both parameters:

X p 1

(
x , t , p 2

)
=

x 2

H 2

(
1 − x

H

)
exp
(
− p 2 t

)
, (25)

X p 2

(
x , t , p 1 , p 2

)
= − p 1

x 2

H 2

(
1 − x

H

)
t exp

(
− p 2 t

)
. (26)

step 3. We compute the D-optimum criterion. Assuming σ = σ p = 1 , the terms of the
Fisher matrix are:

F 1 1 =
1

I

I−1∑
k=0

X 2
p 1

(
χ , k · ∆τ , p 2

)
, (27)

F 1 2 =
1

I

I−1∑
k=0

X p 1

(
χ , k · ∆τ , p 2

)
·X p 2

(
χ , k · ∆τ , , p 1 , p 2

)
, (28)

F 2 2 =
1

I

I−1∑
k=0

X 2
p 2

(
χ , k · ∆τ , p 1 , p 2

)
. (29)

Note that the complete analytical expressions can be obtained. Then, with linear algebra
computations, the D-optimum criterion can be obtained:

Ψ = f(χ ) · g( I ) (30)

with

f(χ ) = −χ 8 · (H − χ ) 4 · p 2
1 ∆τ 2 , (31a)

g( I ) =

(
−2 I 2 exp

(
−β (I − 3)

)
+ I 2 exp

(
−β (I − 4)

)
+ I 2 exp

(
−β (I − 2)

)
(31b)

+ 2 exp
(
−β (I − 3)

)
− exp

(
−β (2 I − 3)

)
− exp

(
3β
))

(31c)

(
H 12

(
exp(β)− 1

) 4
I 2

)−1

, β = 2 p 2 ∆τ . (31d)
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step 4. The interesting point is that the D-optimum criterion is a product of two functions,
one for each parameter of the design plan. Thus, considering function f(χ ) the OED can be
computed analytically and is given by:

χ ◦ =
2

3
H . (32)

Regarding function g( I ), the maximum can be computed using a numerical approach with
maximization or brutal force strategy. Following values are considered for the numerical
applications: H = 3 , p 1 = 20 , ∆τ = 10−1 and p 2 = 0.5 . Results are shown in
Figure 10(a). As remarked in Eq. (30), the OED depends on the a priori value of p 1 and p 2.
To investigate such influence, for each parameters we assume a normal probability with 10%
of standard deviation:

p 1 = N ( 20 , 2 ) , p 2 = N ( 0.5 , 0.05 ) . (33)

For 10 6 values samples according to such probabilities, the optimal number of data acquisition
I ◦ is computed using the maximization strategy of Eq. (30). Figure 10(b) presents the
resulting probability of I ◦ . Such results provide an idea of variation of the optimal number
of data acquisition to perform the experimental campaign.

10 17 24 33 40 50 60 70 80 90 100

I
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0.4

0.6

0.8

1

Ψ
/
m
a
x
Ψ

OED χ
◦ = 2

3
H

90%OED

(a) (b)

Figure 10: Variation of the D-optimum criterion according to the number of time acquisition
I (a) and optimal number of acquisition with the a priori value of the unknown parameter
(b).

3.5 Example 5. Lumped capacitance model, measurement plan: control
variables

The temperature in a slab is modeled by the following ordinary differential equation:

dT

dt
= p 1

(
T∞ − T

)
+ q( t ) , ∀t ∈

[
0 , 1

]
, (34)

with p 1 the unknown parameter (N = 1) playing the role of a Biot number, T∞ the
temperature of the air surrounding the slab and q a heat source term that can be controlled
according to:

q( t ) = q 0

(
1 − exp

(
−u 1 t

) )
exp
(
−u 1 t

)
sin
(
π u 2 t

)
, (35)
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where u 1 and u 2 are the control variables of the experiment, corresponding to the frequency of
the signal and fluctuation of the heat source. One sensor enables to measure the temperature
according to time. Measurement are obtained with a constant time step ∆τ and a fixed
number of measurements I = 101. The objective is to determine the optimal control variables
u 1 and u 2 of the experiment.
step 1. The measurement plan is defined by:

Ωπ =
{
u 1 , u 2

}
, ∀

(
u 1 , u 2

)
∈
[

0 , 10
]
×
[

0.1 , 5
]
. (36)

step 2. The governing equation can be solved to obtain the solution:

T
(
t , p 1

)
= T∞ + exp

(
− p 1 t

) ∫ t

0
exp
(
p 1 z

)
q( z ) dz , (37)

and the sensitivity coefficient for the parameter is given by:

X p 1

(
t , p 1

)
= − t exp

(
− p 1 t

) ∫ t

0
exp
(
p 1 z

)
q( z ) dz (38a)

+ exp
(
− p 1 t

) ∫ t

0
z exp

(
p 1 z

)
q( z ) dz . (38b)

step 3. We compute the D-optimum criterion. For the sake of compactness, the complete
analytical expressions is not detailed.
step 4. An exhaustive search is carried out using the following numerical values: p 1 = 1 ,
T∞ = 20 and q 0 = 500 . Figure 11(a) is obtained considering 100 values of u 1 and u 2 .
The optimal design is defined for:

u ◦1 = 1.81 , u ◦2 = 1.09 . (39)

The corresponding flux and temperature according to time are presented in Figure 11(b).
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Figure 11: Variation of the D-optimum criterion according to the two control variables u 1

and u 2 (a) and time variation of the heat source and model prediction for the OED case (b).
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4 Coming back to the abstract example: time dependent model,
one parameter, moving sensor

It is well known that Fort Boyard creates a temperature gradient in the sea between La
Rochelle and île d’Oléron, France1. This current moves around the castle according to the
sea tides as illustrated in Figure 12(a). During the METTI 8 school, the scientific committee
aims to estimate the magnitude of this temperature gradient. To accomplish this, they have
a boat equipped with sensors capable of measuring the sea temperature. Starting from Île
d’Oléron’s harbor, the committee can sail over the day to monitor the temperature. The
question is: what is the optimal trajectory of the boat to estimate the magnitude of the
current temperature with the highest precision?
The model of the moving heat current is given by:

T
(
x , y , t , p 1

)
= T 0 + p 1 exp

(
1

s

(
x − x 0( t )

) 2
)

exp

(
1

s

(
y − y 0( t )

) 2
)
, (40)

x 0( t ) = x c + R cos
(

2π t
)
, (41)

y 0( t ) = y c + R sin
(

2π t
)
, (42)

where
(
x c , y c

)
are the center of the moving current (Fort Boyard), R is the radius of move-

ment, T 0 is the sea water temperature and p 1 is the unknown parameter corresponding to the
magnitude of the temperature gradient implied by the current. The time and space domains
are given by (x , y ) ∈

[
0 , 1

] 2 and t ∈
[

0 , 1
]
.

The starting position of the boat is denoted χ 0 . It is sailing with a velocity vector field is
defined by:

v( t ) =
(
vx( τ ) , v y( τ )

)
, (43)

which is driven by the motor velocity v 0 ∈
[

0 , v∞
]

and the sailing direction angle θ ∈[
0 , 2π

]
, which both vary with time:

vx( τ ) = v 0( τ ) · cos
(
θ( τ )

)
, v y( τ ) = v 0( τ ) · sin

(
θ( τ )

)
, (44)

where v∞ is the maximal velocity. A number of I measurement are recorded over the time
interval of investigations with a time step ∆τ . One sensor (M = 1) is placed on the boat
that is sailing over time.
step 1. The sensor position is varying in time and is defined by:

χ( τ ) =
(
χx( τ ) , χ y( τ )

)
, (45)

where χx and χ y are the position on x and y coordinates at a time of acquisition τ . Thus,
the measurement plan is defined by the positions of the sensor (the boat) at each time τ k

during the monitoring:

Ωπ =

{
χ k
∣∣ k ∈ { 1 , . . . , I

}}
, χ k = χ( τ k ) , ∀χ ∈

[
0 , 1

] 2
, ∀ τ k ∈

[
0 , 1

]
.

(46)

Since the sensor is moving at velocity v , the sensor position at time τ k is given by:

χ k = χ k−1 + v( τ k ) ∆τ , ∀ k ∈
{

1 , . . . , I
}
. (47)

1Again, this story is not based on any scientific proofs
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Therefore, the measurement plan is equivalent to:

Ωπ =
I⋃

k=1

Ω k
π , (48)

Ω k
π =

{
v k0 , θ

k
}
, ∀ k ∈

{
1 , . . . , I

}
, (49)

where v k0 = v 0( τ k ) . In other words, starting from the sensor position χ 0 at τ = 0 , the
measurement plan consist in determining the boat velocity v k0 and direction angle θ k at each
time of the monitoring.
step 2. We compute the sensitivity coefficient related to the unknown parameter p 1 :

X p 1

(
x , y , t

)
= exp

(
1

s

(
x − x 0( t )

) 2
)

exp

(
1

s

(
y − y 0( t )

) 2
)
. (50)

The sensitivity is invariant to the parameter p 1 so will be the optimal experiment design.
step 3. We compute the D-optimum criterion between two time acquisition τ k and τ k+1 .
Since we have only one parameter, the criterion is equal to the unique element of the Fisher
matrix. Assuming σ = σ p = 1 , we have:

Ψ k =
1

2

(
X p 1

(
χ k , τ k

)
+ X p 1

(
χ k+1 , τ k+1

))
. (51)

Introducing the velocity of the sensor at time acquisition τ k, we obtain:

Ψ k = exp

(
1

s

(
χ kx − x 0( τ k )

) 2
)

exp

(
1

s

(
χ ky − y 0( τ k )

) 2
)

(52a)

+ exp

(
1

s

(
χ kx + v kx ∆τ − x 0( t k + ∆τ )

) 2
)

(52b)

· exp

(
1

s

(
χ ky + v ky ∆τ − y 0( t k + ∆τ )

) 2
)
. (52c)

The OED is given by finding the optimal velocities v kx and v ky at each measurement time τ k

that maximizes the D-optimum criterion:(
v k ◦x , v k ◦y

)
= arg max

( v 0 , θ )∈[ 0 ,v∞ ]×[ 0 , 2π ]
Ψ k
(
v k0 , θ

k
)
, ∀ k ∈

{
1 , . . . , I

}
. (53)

step 4. For the numerical application, the following values are considered: T 0 = 10 ,
x c = y c = 0.5 , s = 0.05 , R = 0.3 , I = 101 and p 1 = 3.5 . The OED is
determined using the exhaustive search strategy, considering a grid of 501 values of velocity
in their respective interval, for each time step.
The optimal sensor position and velocity are shown in Figure 13(a) and 13(a). The optimal
trajectory of the boat is presented in Figure 14(a) combined with the spatial variation of the
sensitivity coefficient. From the starting point (Oleron island), the boat goes in the direction
of maximal sensitivity. Then, at t = 0.4 when it reaches the point of higher sensitivity,
it follows the trajectory of the current. Such trajectory can be compared in Figure 14(b)
with an a priori one, which consists in doing a round trip until Fort Boyard, starting from
Oleron island. This trajectory has a lower sensitivity coefficient as presented in Figure 12(b).
Note that the OED determination does not depends on the a priori value of the unknown
parameter.

Tutorial 13: Optimal Experiment Design for inverse heat conduction problem - page 18
284/339



METTI 8 Advanced School
Thermal Measurements and Inverse Techniques

Ile d’Oléron, France,
Sept.24th - Sept. 29th, 2023

Fort boyard

boat

moving heat current

Oleron

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

(b)

Figure 12: Illustration of the case study with the spatial distribution of temperature at t = 0
(a). Variation of the sensitivity coefficient related to p 1 for two sensor trajectories (b).
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Figure 13: Position (a) and velocity (b) of the sensor for the optimal measurement plan.

5 To go further

Readers are invited to consult the following works that focus in determining the OED for
inverse problems related to transfer in wall materials. It provides additional examples of use
of the OED methodology. In [?], the best experimental plan in terms of quantity and position
of sensors and boundary conditions imposed to the material are investigated for purely heat
transfer and for strongly coupled heat and mass transfer in porous building material. The
investigations remains theoretical, i.e. no experimental campaign was performed. In [?], the
optimal sensor positions and boundary conditions out of 20 possible designs are searched.
The experimental campaign is then performed to identify the sorption curve parameters of
a porous material. In [?], the work concerns in situ measurement in existing building wall
materials. The D-optimum criterion is used to select the optimal experiment duration to
collect the temperature measurements inside a wall. The methodology is applied to estimate
the thermal conductivity of the three-layer wall of a historical building in France. Last, in
[?], the parameter estimation problem considers a two-dimensional heat transfer in a building
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(a) OED trajectory
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(b) a priori trajectory

Figure 14: Spatial distribution of the sensitivitiy coefficient related to p 1 combined with the
sensor position at different times (the color of the marker become lighter with time) for two
measurement plans.

facade. The OED methodology is applied to determine the optimal number and positions of
sensors to determine the thermal conductivity. In [?], an optimal design of a three-layer ex-
perimental apparatus where a thin heater is placed between two identical samples is proposed.
Three experimental variables (experiment duration, heating duration and sensor location) are
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investigated. Last, in [?], the D-optimum criterion is applied to the three-layer apparatus
used for simultaneously estimating thermal properties through the plane source method. A
comparison between uniform heating and piecewise-uniform heating of high-conductivity solid
samples is performed.

6 Conclusion

This tutorial focused on introducing the OED methodology for practical examples of inverse
heat conduction problems. The optimal experiment design guarantees that the solution of
the parameter estimation problem will be obtain with maximum accuracy compared to the
other experimental configurations. The determination of the OED has two main advantages.
First, the approach is half way of the proof of practical identifiability, i.e. the analysis of the
linear dependency of the sensitivity coefficients, since one needs to compute the sensitivity
coefficients. The second advantage is the possibility to define an experiment to estimate with
the maximum accuracy the unknown parameters before performing the experiments as shown
in Figure 4. Nevertheless, it is important to recall that it requires an a priori knowledge on
the unknown parameters. In some cases, the optimal design can depend on the reliability of
this knowledge. To handle this issue, it is possible to use Bayesian inferences as in [?].

Nomenclature and symbols

Latin letters
F Fisher matrix n.a.
I number of time measurements n.a.
J cost function

[ ]
M number of sensors n.a.
M matrix set n.a.
p unknown parameter of the inverse problem

[ ]
T prediction of the model (output)

[ ]
t time variable

(
T
)

U number of control variables n.a.
u control (or input) variable of experiment design

[ ]
X model sensitivity to the unknown parameter

[ ]
x space variable

(
L
)

y observable
[ ]

Greek letters
χ sensor position

(
L
)

τ time of measurements
(
T
)

π experimental design n.a.
σ measurement uncertainty

[ ]
σ p unknown parameter uncertainty

[ ]
Ψ D-optimum criterion

(
−
)

Ω set (mathematical sense) n.a.
Subscripts and superscript

χ related to sensor position
τ related time of measurements
p related to unknown parameter
u related to control variables
dir related to model prediction (direct problem)
obs related to measurement (observation of the phenomena)
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̂ estimated parameter
◦ optimal experiment design
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Abstract. The Approximation Error Model (AEM) Approach is presented in this tutorial 
in order to account for errors resulting from the use of low-fidelity models, instead of 
high-fidelity models, for the solution of inverse problems within the Bayesian framework 
of statistics. In the AEM approach, a statistical representation of the errors between the 
solutions of the high-fidelity and low-fidelity models is developed, by sampling from the 
prior distribution of the model parameters. Therefore, AEM requires priors with limited 
variances, from which samples of the approximation errors can be generated by an 
offline Monte Carlo simulation. The approximation errors are then represented as 
additional noise in the measurement error model, thus resulting in a modified likelihood 
function.   

List of acronyms: 
 

• AE: Approximation Error 

• AEM: Approximation Error Model 

• CEM: Complete Error Model 

• EEM: Enhanced Error Model 

• KF: Kalman Filter 

• MCMC: Markov Chain Monte Carlo 

• MH: Metropolis-Hastings 

• PF: Particle Filtering 

• SIR: Sampling Importance Resampling 
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1. Introduction 

Mathematical models of natural phenomena are in general based on balance laws, such as 
those for mass, momentum and energy, which require additional constitutive equations 
formulated from empirical evidence in order to relate dependent variables. With the scientific 
advancement through the ages, more complex mathematical models have been proposed as 
physical, chemical and biological phenomena, among others, were better studied and 
comprehended. Nevertheless, complex models commonly involve a large number of 
parameters that need to be known with small uncertainties, so that computational simulations 
can provide valuable information about the aimed phenomena. Moreover, mathematical 
models require hypotheses that influence the formulation in terms of the phenomena 
accounted for, number of dimensions, time dependence, scales, linearity, model parameters, 
etc. These hypotheses should be carefully selected by following the Principle of Parsimony 
(Occam's razor or Ockham's razor) in order to obtain simple models, with a small number of 
parameters, which can represent the phenomena under analysis within a desired amount of 
uncertainty [1]. In the practice of scientific computation, such philosophical principle [2] can be 
associated to Verification & Validation [3].  

Validation is defined as "the process of determining the degree to which a model is an accurate 
representation of the real world from the perspective of the intended uses of the model" [3]. 
The word "model" means the mathematical formulation and its computational solution. The 
words "real world" mean that validation necessarily involves the comparison between 
computational and experimental results. Uncertainties in the measured data and in the 
computational results thus need to be taken into account for the validation process [3,4]. 
Verification must be performed before validation [3]. The verification procedure includes code 
verification and solution verification. In the verification of the computational code, an analysis 
is made to establish if it actually solves the mathematical model that it is intended for. The 
objective of solution verification is the estimation of the accuracy of the computational solution 
[3,4].  

Beck [5] has clearly evidenced that the use of inverse problems represents a research 
paradigm that is complementary to that established in Verification & Validation procedures [3]. 
In the inverse problems paradigm, the results obtained from numerical simulations and from 
experiments are not compared a posteriori, but a close synergism exists between experimental 
and theoretical researchers during the course of the study, in order to obtain the maximum of 
information regarding the phenomena under analysis. The solution of an inverse problem relies 
on the computational solution of the direct (forward) problem, which is used, together with the 
available experimental data, for the estimation of parameters and/or functions appearing in the 
mathematical formulation of the phenomena of interest. Therefore, the solution of inverse 
problems requires code verification and solution verification. On the other hand, the validation 
of the code comes out as part of the inverse problem solution, for example, through the 
analysis of the residuals [1]. The residuals are given by the differences between the 
measurements and the dependent variables that are obtained from the solution of the direct 
problem. The residuals are expected to be small (of the order of magnitude of the 
measurement errors) and uncorrelated (without any deterministic behavior), if the 
mathematical formulation and the solution of the direct problem with the estimated parameters 
and/or functions appropriately model the phenomena under analysis. 
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Based on the above discussion, the mathematical model that represents the natural 
phenomena under analysis with the supposed least amount of uncertainty is denoted here as 
the high-fidelity model. Any other model is referred to as a low-fidelity model.   

The use of low-fidelity models instead of high-fidelity models is attractive for the reduction of 
the computational time and implementation of inverse analysis methods. For example, low-
fidelity models can be obtained by reducing the physical phenomena accounted for in the 
formulation, use of variables in a transformed domain, modal analysis, truncation of the 
computational domain and use of numerical coarse meshes, or even metamodels not related 
to any of the phenomena in the direct problem formulation, such as the nowadays quite popular 
machine learning models. The reader is referred to Lecture 7 and Tutorial 6 of this METTI 
School for techniques to formally obtain low-fidelity models.   

A description of the errors inherent to heat transfer measurements and to the solution of 
inverse problems can be found in Chapter 16 of reference [6], as well as in different Lectures 
and Tutorials of this METTI School. In particular, the present tutorial is focused on the analysis 
and quantification of the errors resulting from the replacement of a high-fidelity model by a low-
fidelity model for the solution of an inverse problem. Such approximation errors are then taken 
into account for the solution of the inverse problem by applying the so-called Approximation 
Error Model (AEM) advanced by Kaipio and his group [7–12]. 

In general, uncertainty refers to a statistical model for the errors in the form of a probability 
distribution function, while the error is itself a realization of this probability distribution function 
[4]. For the implementation of the AEM approach, the statistics of the approximation errors are 
computed before the solution of the inverse problem, by solving the high-fidelity model and the 
low-fidelity model with samples of the model parameters obtained from their prior distributions. 
After computing enough samples of the approximation error to obtain its converged mean and 
covariance matrix, this random variable is modeled in terms of an analytical probability 
distribution. A simple but very effective approach is to consider that the approximation errors 
follow a Gaussian distribution and that they can be directly added to the measurement errors. 
Basics of the AEM approach will be introduced in this tutorial and computational examples will 
be presented, by solving the inverse problem within the Bayesian framework of statistics with 
whole-domain or sequential state-estimation techniques [1,7,13].   
 
2. Mathematical background 

 
2.1. Preliminaries 

 
Consider the forward problem formulated as:  
 

𝐲 = 𝐓(𝛃, 𝛆) (1) 
 

where 𝐓(𝛃, 𝛆) is the mathematical representation of the high-fidelity model and 𝛃 is the vector 
of model parameters, while 𝛆 is a random vector representing errors in this model with respect 
to the measurements of the dependent variable 𝐲. Hence, 𝛆 are the measurement errors. 
 
As discussed above, solving the inverse problem by using the high-fidelity model may prove 
to be an impractical task due to its elevated computational cost, even though it represents the 
phenomena under analysis with small uncertainties. Therefore, we consider for the solution of 
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the inverse problem the use of a low-fidelity model instead of the computationally expensive 
high-fidelity model given by Eq. (1). The low-fidelity model is written as: 
 

𝐲𝒂𝒑𝒑 = 𝐓𝒂𝒑𝒑(𝛃𝒂𝒑𝒑, 𝛆𝒂𝒑𝒑) (2) 

 
where 𝛃𝒂𝒑𝒑  is the vector of parameters of the low-fidelity model, the elements of which might 

be a subset of the parameters of the high-fidelity model. In Eq. (2),  𝛆𝒂𝒑𝒑 represents errors of 

the low-fidelity model. Therefore, we can write: 
 

𝐲 = 𝐓𝒂𝒑𝒑(𝛃𝒂𝒑𝒑, 𝛆𝒂𝒑𝒑) + [𝐓(𝛃, 𝛆) − 𝐓𝒂𝒑𝒑(𝛃𝒂𝒑𝒑, 𝛆𝒂𝒑𝒑)] (3a) 

or 
 

𝐲 = 𝐓𝒂𝒑𝒑(𝛃𝒂𝒑𝒑, 𝛆𝒂𝒑𝒑) + 𝐞(𝛃, 𝛃𝒂𝒑𝒑, 𝛆, 𝛆𝒂𝒑𝒑) (3b) 

where  
 

𝐞(𝛃, 𝛃𝒂𝒑𝒑, 𝛆, 𝛆𝒂𝒑𝒑) = 𝐓(𝛃, 𝛆) − 𝐓𝒂𝒑𝒑(𝛃𝒂𝒑𝒑, 𝛆𝒂𝒑𝒑) (4) 

is the approximation error between the solutions of the low-fidelity and the of high-fidelity 
models. 
 
With the hypotheses that the measurement errors are additive and independent of the 
parameters 𝛃, Eq. (1) can be written as [1,7,13]: 
 

𝐲 = 𝐓(𝛃) + 𝛆 (5) 
 
Thus, we obtain from Eq. (3a): 
 

𝐲 = 𝐓𝑎𝑝𝑝(𝛃𝑎𝑝𝑝, 𝛆𝑎𝑝𝑝) + [𝐓(𝛃) − 𝐓𝑎𝑝𝑝(𝛃𝑎𝑝𝑝, 𝛆𝑎𝑝𝑝)] + 𝛆 (6) 

 
which is re-written as: 
 

𝐲 = 𝐓𝑎𝑝𝑝(𝛃𝑎𝑝𝑝) + 𝛈(𝛃) (7) 

 
where 
 

𝛈(𝛃) = 𝐞(𝛃) + 𝛆 (8) 
 
In Eq. (8), 𝛈(𝛃) is the total error that includes the approximation error, 𝐞(𝛃), as well as the 

experimental error, 𝛆. By re-writing Eq. (6) as Eq. (7), it is assumed that the effects from 𝛆𝑎𝑝𝑝 

and from the selection of 𝛃𝑎𝑝𝑝 as a subset of 𝛃 are all accounted for in the statistical 

representation of the approximation error, which then simplifies from Eq. (4) to 

𝐞(𝛃, 𝛃𝒂𝒑𝒑, 𝛆, 𝛆𝒂𝒑𝒑) ≡ 𝐞(𝛃). 

 

2.2. Gaussian Measurement Errors 
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It is assumed here that the vector of measurement errors, 𝛆, is Gaussian, with zero mean (𝛆 =
𝟎) and known covariance matrix 𝐖. Thus, the probability density of 𝛆 is given by [1,7,13]: 
 

𝑝(𝛆) = (2𝜋)−
𝐷
2 |𝐖|−

1
2 exp {−

1

2
𝛆𝑇𝐖−1𝛆} (9) 

 
where 𝐷 is the total number of measurements. By replacing 𝛆 from Eq. (5) into Eq. (9), we 
obtain 
 

𝑝(𝛆) = (2𝜋)−
𝐷
2 |𝐖|−

1
2 exp {−

1

2
[𝐲 − 𝐓(𝛃)]𝑇𝐖−1[𝐲 − 𝐓(𝛃)]} (10) 

 
Therefore, 𝑝(𝛆) also represents the conditional probability of the measurements 𝐲 given the 

model parameters 𝛃, that is, 𝑝(𝛆) = 𝑝(𝐲|𝛃), which is denoted as the likelihood function.  

 

2.3. Statistics of the Approximation Error 
 
Similarly to the measurement errors that appear in Eq. (5), which are used for the definition of 

likelihood function given by Eq. (10) in terms of the high-fidelity model, the total error 
𝛈(𝛃) needs to be statistically modeled to obtain a modified likelihood based on the low-fidelity 

model (see Eqs. 7 and 8). Since the measurement errors can be independently modeled based 
on the calibration procedure of sensors and data acquisition systems, such as the Gaussian 

distribution given by Eq. (9), a statistical model for the total errors in fact demands the 
calculation of the approximation errors between the solutions of the high-fidelity and low-fidelity 
models, that is, 
 

𝐞(𝛃) = 𝐓(𝛃) − 𝐓𝑎𝑝𝑝(𝛃𝑎𝑝𝑝) (11) 
 
The solution of the inverse problem within the Bayesian framework of statistics conveniently 
allows that samples of the approximation error 𝐞(𝛃) be computed based on the prior 
information available for the parameters 𝛃, as well as other possible sources of uncertainties. 
The computation of these samples would not be possible with classical techniques for the 
solution of the inverse problem because they are limited to the analysis of the likelihood 
function, which means that the information available for the model parameters before the 
experiments is not formally taken into account through Bayes’ theorem [7,13].  
 
The statistics of the approximation error 𝐞(𝛃) are computed before the solution of the inverse 
problem, as follows: 

 

1. Let k = 1. Obtain samples 𝛃(𝑘) and 𝛃𝑎𝑝𝑝
(𝑘)

 from the prior distributions for the 

parameters.  

2. Solve the complete model with the parameter vector 𝛃(𝑘) and the approximate 

model with the parameter vector 𝛃𝑎𝑝𝑝
(𝑘)

. 

3. Compute the sample of the approximation error: 
 

𝐞(𝑘)(𝛃) = [𝐓(𝛃(𝑘)) − 𝐓𝑎𝑝𝑝 (𝛃𝑎𝑝𝑝
(𝑘)

)] (12) 

 
4. Make k = k + 1.  
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5. Repeat the steps above until the statistics of 𝐞(𝛃), obtained with the samples 𝐞(𝑘) =
(𝛃), converge. 

 

As it will be apparent below, the statistics of 𝐞(𝑘)(𝛃) that are of interest for the Approximation 
Error Model approach are the mean and the covariance matrix. They can be respectively 
calculated as follows: 
 

𝐞 =
1

𝑁𝑠
∑ 𝐞(𝑘)(𝛃)

𝑁𝑠

𝑘=1

(13a) 

𝐖𝑒 =
1

𝑁𝑠 − 1
∑[𝐞(𝑘)(𝛃) − 𝐞]

𝑁𝑠

𝑘=1

[𝐞(𝑘)(𝛃) − 𝐞]
𝑇

(13b) 

 
where 𝑁𝑠 is the number of samples of the approximation error.  
 
We note that the mean 𝐞 usually converges faster than the variances and covariances in  

𝐖𝑒. The convergence of 𝐖𝑒 can be verified in terms of the convergence of its trace or its 
largest eigenvalues. Also, note that the AEM cannot be applied with improper priors, since they 

have unbounded variances and the samples 𝛃(𝑘) and 𝛃𝑎𝑝𝑝
(𝑘)

 cannot be obtained. 

 

2.4. Approximation Error Model (AEM) Approach 
 

After obtaining the samples 𝐞(𝑘)(𝛃) in a sufficient number 𝑁𝑠 for which 𝐞 and 𝐖𝑒 are converged, 
these random variables are modeled in terms of an analytical distribution. A simple but very 
effective approach is to consider that they follow a Gaussian distribution [7–12], that is, 
 

𝑝(𝐞) ∝ exp {−
1

2
[𝐞 − 𝐞]𝑇𝐖𝑒

−1[𝐞 − 𝐞]} (14) 

 
Then, the likelihood with the error model of equation (7), 𝛈(𝛃) given by equation (8) and 𝐞(𝛃) 
modeled as a Gaussian variable, is given by: 
 

𝑝(𝐲|𝛃) ∝ exp {−
1

2
[𝐲 − 𝐓𝑎𝑝𝑝(𝛃𝑎𝑝𝑝) − 𝛈]

𝑇
𝐖̃−1[𝐲 − 𝐓𝑎𝑝𝑝(𝛃𝑎𝑝𝑝) − 𝛈]} (15) 

 
For a Gaussian prior with mean  and covariance matrix V, that is,  
 

𝑝(𝛃) ∝ exp {−
1

2
(𝛃 − 𝛍)𝑇𝐕−1(𝛃 − 𝛍)} (16) 

 

the posterior distribution obtained with the likelihood given by Eq. (15) and the prior given by 
Eq. (16) is: 
 

𝑝(𝛃|𝐲) ∝ exp {−
1

2
[𝐲 − 𝐓𝑎𝑝𝑝(𝛃𝑎𝑝𝑝) − 𝛈]

𝑇
𝐖̃−1[𝐲 − 𝐓𝑎𝑝𝑝(𝛃𝑎𝑝𝑝) − 𝛈] −

1

2
(𝛃 − 𝛍)𝑇𝐕−1(𝛃 − 𝛍)} (17) 

 
The mean and the covariance matrix of the total error 𝛈(𝛃) are respectively obtained from [8]: 
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𝛈 = 𝛆 + 𝐞 + 𝚪𝛈𝛃𝐕−𝟏(𝛃 − 𝛍) (18a) 
𝐖̃ = 𝐖𝑒 + 𝐖 − 𝚪𝛈𝛃𝐕−𝟏𝚪𝛈𝛃

𝑇 (18b) 
 
where 𝚪𝛈𝛃 is the covariance of 𝛈 and 𝛃. Equations (18a,b) give the Complete Error Model [8].  

 
We note that, with the standard hypotheses regarding the measurement errors made above, 
𝛆 = 𝟎. By further neglecting the linear dependency between 𝛈 and 𝛃, that is, 𝚪𝛈𝛃 = 𝟎, equations 

(18a,b) simplify to the so-called Enhanced Error Model: 
 

𝛈 ≃ 𝐞 (19a) 
𝐖̃ = 𝐖𝑒 + 𝐖 (19b) 

  
Therefore, in the Approximation Error Model (AEM) Approach, the solution of the inverse 
problem within the Bayesian framework can be readily applied with the posterior given by 

equation (17), where the original likelihood was modified by the mean and covariance matrix 

of the total error 𝛈(𝛃), that is, 𝛈 and 𝐖̃, respectively (see Eq. 15). These two quantities are 
usually quite well approximated by equations (19a,b), respectively, and application of the more 
complicated complete error model given by equations (18a,b) is not needed. 

 
2.5. AEM in Bayesian Estimation Methods 

2.5.1. Markov Chain Monte Carlo (MCMC) 
 
Herein we present the application of the AEM in the context of the Metropolis-Hastings (MH) 
sampling algorithm for solution of inverse problems via Markov Chain Monte Carlo (MCMC). 

The objective is to draw an ensemble of 𝑵 samples 𝛃(𝒌), 𝒌 = 𝟏, … , 𝑵 from the posterior pdf 
𝒑(𝛃|𝐲) wherefrom the statistics can be calculated. The MH algorithm requires defining a 

proposal distribution 𝒑(𝛃∗, 𝛃(𝒌−𝟏)) and is originally applied as follows 

 

(i)  Sample a candidate 𝛃∗ from 𝒑(𝛃∗, 𝛃𝒌−𝟏); 

(ii) Calculate the acceptance factor using Eq. (20); 
 

𝜶 = 𝐦𝐢𝐧 [𝟏,
𝒑(𝛃∗|𝐲)𝒑(𝛃(𝒌−𝟏), 𝛃∗)

𝒑(𝛃(𝒌−𝟏)|𝐲)𝒑(𝛃∗, 𝛃(𝒌−𝟏))
] (20) 

 
(iii) Generate a random uniformly distributed number 𝒖 ∼ 𝑼[𝟎, 𝟏]; 

(iv) If 𝒖 ≤ 𝜶, set 𝛃(𝒌) = 𝛃∗; otherwise, 𝛃(𝒌) = 𝛃(𝒌−𝟏); 
(v) Set 𝒌 = 𝒌 + 𝟏 and return to step (i) until the desired number of states has been 

achieved. 
 
Applying the AEM in the MH algorithms comprises of making the appropriate modifications in 

the posterior 𝒑(𝛃|𝐲). Should one use the high-fidelity model to solve the inverse problem (that 
is, not use the AEM), the Gaussian prior given in Eq. (16) could be combined with the likelihood 
given in Eq. (10), yielding the posterior given in Eq. (21). 
 

𝒑(𝛃|𝐲) ∝ 𝐞𝐱𝐩 {−
𝟏

𝟐
[𝐲 − 𝐓(𝛃)]𝑻𝐖−𝟏[𝐲 − 𝐓(𝛃)] −

𝟏

𝟐
(𝛃 − 𝛍)𝑻𝐕−𝟏(𝛃 − 𝛍)} (21) 
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On the other hand, if we are to attempt solving the inverse problem using solely the low-fidelity 
model, a similar posterior would arise, as shown in Eq. (22). 
 

𝒑(𝛃|𝐲) ∝ 𝐞𝐱𝐩 {−
𝟏

𝟐
[𝐲 − 𝐓𝒂𝒑𝒑(𝛃𝒂𝒑𝒑)]

𝑻
𝐖−𝟏[𝐲 − 𝐓𝒂𝒑𝒑(𝛃𝒂𝒑𝒑)] −

𝟏

𝟐
(𝛃𝒂𝒑𝒑 − 𝛍)

𝑻
𝐕−𝟏(𝛃𝒂𝒑𝒑 − 𝛍)} (22) 

 
Now, combining the low-fidelity model with the AEM in MH algorithm would require only to use 
Eq. (17) in Eq. (20). This goes to show that, in the particular case of MH algorithm, 
implementing the AEM is minimally invasive, in terms of coding, solely requiring modifications 
on functions or subroutines involving calculation of the posterior pdf.  

 
2.5.2. Kalman Filter 

The recursive solution of inverse problems within the Bayesian approach can benefit from the 
AEM as well. Particularly, we refer here to state estimation problems, also known as 
nonstationary inverse problems [7]. In such problems, we are interested in reconstructing 
information on the state vector 𝐱 using the observation vector 𝐲, containing the experimental 
measurements. It bears mentioning that the state vector contains, but is not limited to, the 
sought variables 𝛃. 

The dynamics of the forward problem is mathematically described according to an evolution-
observation model (EOM). In this section we focus on linear, Gaussian EOMs, for the purposes 

of applying the AEM to the classical Kalman Filter [7,14,15]. This EOM is given by Eqs. (23a,b), 
where 𝐰𝑘 and 𝐯𝑘 are random vectors following a Gaussian distribution with zero mean and 

covariance matrices 𝐐𝑘 and 𝐑𝑘, respectively. This model also contains the evolution and 
observations matrices 𝐅𝑘 and 𝐇𝑘, respectively, and the control matrix and vector 𝐆𝑘 and 𝐮𝑘, 
respectively. 

 

𝐱𝒌+𝟏 = 𝐅𝒌𝐱𝒌 + 𝐆𝒌𝐮𝒌 + 𝐰𝒌+𝟏 (23a) 
𝐲𝒌 = 𝐇𝒌𝐱𝒌 + 𝐯𝒌 (23b) 

 
The solution to this state estimation problem is given by Eqs. (24a-e), where 𝐱̂𝒌

− and 𝐱̂𝒌
+ are 

the prior and posterior estimated of the state vector 𝐱𝒌; 𝐏𝒌
− and 𝐏𝒌

+ are the prior and posterior 

estimation error covariance matrices and 𝐊𝒌 is the Kalman gain matrix. 
 

𝐱̂𝒌+𝟏
− = 𝐅𝒌𝐱̂𝒌

+ + 𝐆𝒌𝐮𝒌 (24a) 

𝐏𝒌+𝟏
− = 𝐅𝒌𝐏𝒌

+𝐅𝒌
𝑻 + 𝐐𝒌 (24b) 

𝐊𝒌 = 𝐏𝒌
−𝐇𝒌

𝑻(𝐇𝒌𝐏𝒌
−𝐇𝒌

𝑻 + 𝐑𝒌)
−𝟏

(24c) 

𝐱̂𝒌+𝟏
+ = 𝐱̂𝒌+𝟏

− + 𝐊𝒌(𝐲𝒌 − 𝐇𝒌𝐱̂𝒌+𝟏
− ) (24d) 

𝐏𝒌+𝟏
+ = (𝐈 − 𝐊𝒌𝐇𝒌)𝐏𝒌+𝟏

− (24e) 

 
Accounting for AEs in the context of nonstationary inverse problems requires the accounting 
thereof in the EOM itself, as shown in [16,17]. This means that the AEs appear in both evolution 
and observation models, as shown in Eqs. (25a,b). In this modified EOM, are included the 

state evolution approximation error 𝛄𝒌 and the observation approximation error 𝛅𝒌. 

 
𝐱𝒌+𝟏 = 𝐅𝒌𝐱𝒌 + 𝐆𝒌𝐮𝒌 + 𝛄𝒌 + 𝐰𝒌+𝟏 (25a) 
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𝐲𝒌 = 𝐇𝒌𝐱𝒌 + 𝛅𝒌 + 𝐯𝒌 (25b) 

 
In the case of the Enhanced Error Model described above, the modified KF equations are 

much similar to the original ones, being given in Eqs. (26a-e). To employ the EEM, it is required 

only to calculate the mean and covariance of the state and observation AEs. 

 

𝐱̂𝒌+𝟏
− = 𝐅𝒌𝐱̂𝒌

+ + 𝐆𝒌𝐮𝒌 + 𝔼[𝛄𝒌] (26a) 

𝐏𝒌+𝟏
− = 𝐅𝒌𝐏𝒌

+𝐅𝒌
𝑻 + 𝐯𝐚𝐫(𝛄𝒌) + 𝐐𝒌 (26b) 

𝐊𝒌 = 𝐏𝒌
−𝐇𝒌

𝑻(𝐇𝒌𝐏𝒌
−𝐇𝒌

𝑻 + 𝐯𝐚𝐫(𝛅𝒌) + 𝐑𝒌)
−𝟏

(26c) 

𝐱̂𝒌+𝟏
+ = 𝐱̂𝒌+𝟏

− + 𝐊𝒌(𝐲𝒌 − 𝐇𝒌𝐱̂𝒌+𝟏
− − 𝔼[𝛅𝒌]) (26d) 

𝐏𝒌+𝟏
+ = (𝐈 − 𝐊𝒌𝐇𝒌)𝐏𝒌+𝟏

− (26e) 

 
2.5.3. Particle Filter 

 
Like MCMC, Particle Filtering (PF) refers to a class of methods rather than a single one. For 
this reason, our focus in this section will be the SIR algorithm for particle filtering for the 
purposes of illustrating the inclusion of the AEM in such methods. The original SIR algorithm 
can be implemented following the algorithm below [18–20], for each recursive step. Similarly 
to the KF described above, in the PF we seek to identify the state vector 𝐱 which contains – 

but it is not limited to – the sought variables 𝛃. 
 

(i)  For 𝒊 = 𝟏, … , 𝑵 draw new particles 𝐱𝒌
𝒊  from the prior 𝒑(𝐱𝒌|𝐱𝒌−𝟏

𝒊 ) and calculate their 

corresponding weights 𝒘𝒌
𝒊 = 𝒑(𝐲𝒌|𝐱𝒌

𝒊 ); 

(ii) Normalize the weights, that is, let 𝒘𝒌
𝒊 = 𝑻𝒘

−𝟏𝒘𝒌
𝒊 , 𝒊 = 𝟏, … , 𝑵 where 𝑻𝒘 = ∑ 𝒘𝒊

𝒌𝑵
𝒊=𝟏 ; 

(iii) Resample as follows 

a. Construct the cumulative sum of weights (CSW) 𝒄𝒊 = 𝒄𝒊−𝟏 + 𝒘𝒌
𝒊 , 𝒊 = 𝟏, … , 𝑵, 

with 𝒄𝟎 = 𝟎; 

b. Let 𝒊 = 𝟏 and draw a random variable 𝒖𝟏 ∼ 𝑼[𝟎, 𝑵−𝟏]; 

c. For 𝒋 = 𝟏, … , 𝑵, move along the CSW with 𝒖𝒋 = 𝒖𝟏 + 𝑵−𝟏(𝒋 − 𝟏); 

d. While 𝒖𝒋 > 𝒄𝒊, let 𝒊 = 𝒊 + 𝟏; 

e. Assign 𝐱𝒌
𝒋

= 𝐱𝒌
𝒊  and 𝒘𝒌

𝒋
= 𝑵−𝟏. 

 
As can be seen, the mathematical model (be it high- or low-fidelity) comes into play in step (i), 
where the likelihood 𝒑(𝐲|𝐱) is evaluated. That is, should one carry the inverse analysis through 

using the high-fidelity model, the likelihood would be given by Eq. (27a). On the other hand, it 
the low-fidelity model is to be used, then Eq. (27b) must be employed. At last, to include the 
AEM and combine it with the low-fidelity model, Eq. (27c) is the likelihood of choice. 
 

𝑝(𝐲|𝐱) = (2𝜋)−
𝐷
2 |𝐖|−

1
2 exp {−

1

2
[𝐲 − 𝐓(𝐱)]𝑇𝐖−1[𝐲 − 𝐓(𝐱)]} (27a) 

𝑝(𝐲|𝐱) = (2𝜋)−
𝐷
2 |𝐖|−

1
2 exp {−

1

2
[𝐲 − 𝐓𝑎𝑝𝑝(𝐱)]

𝑇
𝐖−1[𝐲 − 𝐓𝑎𝑝𝑝(𝐱)]} (27b) 

𝑝(𝐲|𝐱) = (2𝜋)−
𝐷
2 |𝐖|−

1
2 exp {−

1

2
[𝐲 − 𝐓𝑎𝑝𝑝(𝛃𝑎𝑝𝑝) − 𝛈]

𝑇
𝐖̃−1[𝐲 − 𝐓𝑎𝑝𝑝(𝛃𝑎𝑝𝑝) − 𝛈]} (27c) 

 
3. Applications  
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3.1. A Simple Example 

 
A simple heat conduction problem is used here for illustration of the AEM approach. Consider 

transient linear heat conduction in a slab of thickness 𝐿, initially at the temperature 𝑇0. The 
boundary at 𝑥 = 0 is thermally insulated. For times 𝑡 > 0, the slab exchanges heat by 

convection with a surrounding fluid at the temperature 𝑇∞ with a heat transfer coefficient ℎ. 
There are no energy sources inside the slab. The mathematical formulation of this problem is 
given by: 
 
 

1

𝛼

𝜕𝑇(𝑥, 𝑡)

𝜕𝑡
=

𝜕2𝑇

𝜕𝑥2 ,           in 0 < 𝑥 < 𝐿, 𝑡 > 0 (28a) 

−𝑘
𝜕𝑇

𝜕𝑥
= 0,                        at 𝑥 = 0, 𝑡 > 0         (28b) 

𝑘
𝜕𝑇

𝜕𝑥
+ ℎ𝑇 = ℎ𝑇∞,             at 𝑥 = 𝐿, 𝑡 > 0           (28c) 

𝑇 = 𝑇0,                               in 0 < 𝑥 < 𝐿, 𝑡 = 0 (28d) 
 
 
where 𝑘 is the thermal conductivity and 𝛼 is the thermal diffusivity. 
 
By defining the following dimensionless variables: 
 

𝑋 =
𝑥

𝐿
, 𝜏 =

𝛼𝑡

𝐿2 , 𝜃(𝑋, 𝜏) =
𝑇(𝑥, 𝑡) − 𝑇∞

𝑇0 − 𝑇∞
, 𝐵𝑖 =

ℎ𝐿

𝑘
(29) 

 
equations (28a-d) are re-written as: 
 

𝜕𝜃(𝑋, 𝜏)

𝜕𝜏
=

𝜕2𝜃

𝜕𝑋2
,           in 0 < 𝑋 < 1, 𝜏 > 0 (30a) 

𝜕𝜃

𝜕𝑋
= 0,                            at 𝑋 = 0, 𝜏 > 0         (30b) 

𝜕𝜃

𝜕𝑋
+ 𝐵𝑖𝜃 = 0,                at 𝑋 = 1, 𝜏 > 0          (30c) 

𝜃 = 1,                                in 0 < 𝑋 < 1, 𝜏 = 0 (30d) 
 
The analytical solution of this problem is given by [21]: 
 

𝜃(𝑋, 𝜏) = ∑
𝑒−𝛾𝑚

2 𝜏

𝑁(𝛾𝑚)
𝜓

∞

𝑚=1

(𝛾𝑚, 𝑋) ∫ 𝜓(𝛾𝑚, 𝑋′)𝑑𝑋′
1

𝑋′=0

(31) 

 
where 
 

𝜓(𝛾𝑛, 𝑋) = cos(𝛾𝑚𝑋) (32a) 

1

𝑁(𝛾𝑚)
= 2

𝛾𝑚
2 + 𝐵𝑖2

(𝛾𝑚
2 + 𝐵𝑖2) + 𝐵𝑖

(32b) 
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and the eigenvalues 𝛾𝑚 are the positive roots of: 
 

𝛾 tan 𝛾𝑚 = 𝐵𝑖 (32c) 
 
The dimensionless heat conduction problem (30a-d) is considered as the high-fidelity model in 

this example. The solution of problem (30a-d) can be obtained from Eq. (31) by truncating the 
summation with sufficient terms to reach convergence within the desired tolerance. 
 
A lumped formulation is considered as the low-fidelity model in this example. The lumped 
model is given by: 
 

𝜌𝑐𝐿
𝑑𝑇𝑎𝑝𝑝(𝑡)

𝑑𝑡
= ℎ(𝑇∞ − 𝑇𝑎𝑝𝑝), 𝑡 > 0 (33a) 

𝑇𝑎𝑝𝑝 = 𝑇0,                                               𝑡 = 0 (33b) 

 

Where 𝜌 and 𝑐 are the density and specific heat.  
 
The solution of the lumped model in dimensionless form is given by: 
 

𝜃𝑎𝑝𝑝(𝜏) = 𝑒−𝐵𝑖𝜏 (34) 

Therefore, the only parameter of both the high-fidelity model and the low-fidelity model is the 
Biot number, that is,  
 

𝛃 = 𝛃𝑎𝑝𝑝 = [𝐵𝑖] (35) 
 
As it is well-known from basic heat transfer, the approximation error between the solutions of 
the high-fidelity model (Eq. 31) and of the low-fidelity model (Eq. 34) in this example is small 
for small Biot numbers, where usually 𝐵𝑖 = 0.01 is used as a threshold value for the validity of 

the lumped model [21]. In fact, the analytical solution for 𝐵𝑖 = 0.01 presented in Figure 1a 
shows that temperature gradients are quite small along the plate for different times, thus 
resulting in maximum errors around 2% at large times tending to steady-state (see Figure 1b). 
Such behavior is quite different from that observed for large Biot numbers. Figure 2a shows 
the analytical solution for 𝐵𝑖 = 10, where large temperature gradients can be observed in the 
plate, thus resulting in the large approximation errors presented in Figure 2b. 
 

 
(a) 

 
(b) 
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Figure 1. (a) Analytical solution for 𝐵𝑖 = 0.01; (b) Relative approximation error for 𝐵𝑖 = 0.01. 

 

 
(a) 

 
(b) 

 
Figure 2. (a) Analytical solution for 𝐵𝑖 = 10; (b) Relative approximation error for 𝐵𝑖 = 10. 

 
Since the approximation errors are larger for large values of the Biot number, a Gaussian prior 
with mean 10 and standard deviation 2 is considered for the solution of the inverse problem in 
this example. Three thousand samples of the Biot number obtained from this distribution are 
presented in Figure 3. The inverse problem of interest involves the estimation of the single 
parameter appearing in either the high-fidelity model or the low-fidelity model, that is, the Biot 
number. Nonintrusive transient measurements taken at the insulated boundary (𝑋 = 0) every 

Δ𝜏 = 0.02 are used for the inverse analysis. The measurements were simulated by solving the 
high-fidelity model with 𝐵𝑖 = 10 and adding uncorrelated Gaussian errors with zero mean and 

standard deviation of 0.01. Figure 4 presents the simulated measurements. 
 

 
Figure 3. Samples of the Biot number used for the calculation of the approximate error statistics 
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Figure 4. Simulated measurements taken at 𝑋 = 0 with 𝐵𝑖 = 10 

 
In this example, we consider 𝑁𝑠 = 3000 samples of the Biot number (see Figure 3) for the 
calculation of the statistics of the approximation error with Eqs. (13a,b). The means of the 
approximation errors, as well as the trace and the first 5 eigenvalues of their covariance matrix 
calculated with different numbers of samples are presented in Figures 5a-c, respectively. 
Figure 5a shows that the means of the approximation errors reached convergence with a small 
number of samples. On the other hand, the convergence of the covariance matrix was slow 
and required more samples as shown by Figures 5b,c. The calculation of the samples of the 
approximation error and their respective statistics took 731 s with a Python code running as a 
Google Colab notebook. 
 

 
(a) 

 
(b) 
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(c) 

 
Figure 5. Convergence of the approximation error statistics: (a) Mean; (b) Trace of the 
covariance matrix; (c) First five eigenvalues of the covariance matrix 
 
The samples of the solution of the high-fidelity (local) and low-fidelity (lumped) models used 
for the calculation of the approximation error are illustrated in Figure 6. This figure presents 

the mean values, as well as the 95% Gaussian confidence intervals (±1.96𝜎𝑠𝑜𝑙, where 𝜎𝑠𝑜𝑙 is 
the respective standard deviation of the solution samples) and the 95% credible intervals 
(obtained from the 2.5% and 97.5% quantiles of the solution samples). Similar quantities are 
presented in Figure 7 for the approximation error. We note in Figure 6 that the Gaussian model 
provided a good representation for the statistics of the high-fidelity (local) model, but such was 
not the case for the low-fidelity (lumped) model. Thus, the confidence and credible intervals of 
the approximation error shown in Figure 7 did not coincide in the region of large errors around 

𝜏 = 0.2 in this example.  
 

 
Figure 6. Samples of the solutions of the high-fidelity and low-fidelity models 
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Figure 7. Samples of the approximation error statistics 

    
The solution of the inverse problem with the Metropolis-Hastings algorithm of the Markov Chain 
Monte Carlo method [6,13] is now considered for this example.  Three different test-cases are 
examined, namely:  

(i) The high-fidelity model given by Eq. (31) is used for the calculation of the estimated 

temperature and the likelihood is calculated with Eq. (10);  
(ii) The low-fidelity model given by Eq. (34) is used for the calculation of the estimated 

temperature and the likelihood is calculated with Eq. (10), that is, the AEM approach 
is not applied to correct for approximation errors; 

(iii) The low-fidelity model given by Eq. (34) is used for the calculation of the estimated 

temperature and the likelihood is calculated with Eq. (16), that is, the AEM approach 
is applied to correct for approximation errors. 

 
For all cases, the Markov chains for the Biot number were started at 𝐵𝑖 = 5, while the simulated 
measurements were simulated with 𝐵𝑖 = 10, as shown in Figure 4. The Markov chains were 
simulated with 20000 states, and the first 5000 states were considered as the burn-in period. 
The proposal distribution in the Metropolis-Hastings algorithm was given by a Gaussian 
random-walk process [6,13], with a standard deviation of 5% of the value of the sample at the 
current state of the Markov chain. 
 
Let´s first analyze test-case (i), where the high-fidelity model was used for the solution of the 
inverse problem. In fact, an inverse crime [7] is committed in this case, since the same model 
was used to generate the simulated measurements and for the solution of the inverse problem. 
The Markov chain for the Biot number is presented in Figure 8. This figure shows that the chain 
reached equilibrium in about 1000 states. Thus, the assumed burn-in period could be safely 
used for the calculation of the posterior distribution statistics, with the samples between states 
5000 and 20000. Figure 9 shows the histogram of the samples of the Biot number after the 
burn-in period. This figure reveals that the posterior distribution resembles a Gaussian 
distribution, centered around the exact value of the Biot number that was used to generate the 
simulated measurements. The estimated temperatures at the measurement location are in 
excellent agreement with the measurements, as shown by Figure 10. In fact, the absolute 
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value of the logarithm of the Posterior distribution was significantly minimized by the 
Metropolis-Hastings algorithm as the Markov chain evolved, as shown by Figure 11. 
 

 
Figure 8. Test-case (i): Markov chain for the Biot number 

 
Figure 9. Test-case (i): Histogram of the Biot number samples after the burn-in period 
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Figure 10. Test-case (i): Comparison between estimated and measured temperatures 

 
Figure 11. Test-case (i): Markov chain of the absolute value of the logarithm of the Posterior 

distribution 
 

 
Test-case (ii) is now analyzed, where the high-fidelity model was replaced by the low-fidelity 
model for the solution of the inverse problem, without accounting for the approximation errors. 
The Markov chain and the histogram of the samples (after the burn-in period) of the Biot 
number are presented in Figures 12 and 13, respectively. These figures show that the 
equilibrium distribution of the Biot number samples was around a value completely different 
from the exact one (that was used to generate the simulated measurements). This behavior 
resulted from the fact that the low-fidelity model used for the solution of the inverse problem 
was not compatible with the high-fidelity model, as shown by Figure 6, and the AEM approach 
was not applied in this test-case. Besides reaching the wrong equilibrium posterior distribution 
for the Biot number, Figure 14 shows that the use of the low-fidelity model resulted in a poor 
agreement between estimated and measured temperatures. Hence, the temperature residuals 
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were correlated, clearly demonstrating that the applied low-fidelity model with the estimated 
parameter was not capable of appropriately reproducing the experimental data. In addition, 
Figure 15 shows that the minimum absolute value of the logarithm of the Posterior distribution 
reached in this test-case was significantly larger than that for test-case (i). 

 
 

Figure 12. Test-case (ii): Markov chain for the Biot number 
 

 
Figure 13. Test-case (ii): Histogram of the Biot number samples after the burn-in period 
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Figure 14. Test-case (ii): Comparison between estimated and measured temperatures 

 

 
Figure 15. Test-case (ii): Markov chain of the absolute value of the logarithm of the Posterior 

distribution 
 
 
The problems evidenced by test-case (ii), resulting from the simple replacement of the high-
fidelity model by the low-fidelity model in the solution of the inverse problem, can be overcome 
if the approximation errors are accounted for in the inverse problem solution with the 
application of the AEM approach. Test-case (iii) thus considers the approximation error 
statistics calculated above, for the simulation of the posterior distribution given by Eq. (17) with 
the Metropolis-Hastings algorithm of the Markov Chain Monte Carlo method. Figure 16 
presents the Markov chain of the Biot number for test-case (iii), while Figure 17 shows the 
histogram of the samples of the Markov chain after the burn-in period. Differently from the 
results shown by Figures 12 and 13 for test-case (ii), Figures 16 and 17 reveal that the 
equilibrium distribution of the Biot number obtained with test-case (iii) is indeed around the 
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exact value of the Biot number, similarly to test-case (i) where the high-fidelity model was used. 
In addition, the agreement between estimated and measured temperatures for test-case (iii) 
shown by Figure 18 was analogous to that obtained with the high-fidelity model (see Figure 
10), that is, the temperature residuals were not correlated. Therefore, the use of the low-fidelity 
model with approximation errors accounted for by the AEM approach was capable of 
accurately representing the experimental data. The behavior of the posterior distribution of 
test-case (iii) presented by Figure 19 was also quite similar to that observed in Figure 11 for 
test-case (i). 
 

 
Figure 16. Test-case (iii): Markov chain for the Biot number 

 

 
Figure 17. Test-case (iii): Histogram of the Biot number samples after the burn-in period 
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Figure 18. Test-case (iii): Comparison between estimated and measured temperatures 

 

 
Figure 19. Test-case (iii): Markov chain of the absolute value of the logarithm of the Posterior 

distribution 
 
Some statistics of the posterior distributions for the Biot number obtained with each of the test-
cases presented above are shown by Table 1. The CPU times for the generation of the Markov 
chains are also presented in this table, which were obtained with a Python code run as a 
Google Colab notebook. Such as discussed above, the statistics depicted in Table 1 reveal 
that the use of the low-fidelity model with the AEM approach resulted in a posterior distribution 
similar to that obtained with the high-fidelity model, but in a much shorter computational time. 
Even if we take into account the CPU time required for the calculation of the approximation 
error statistics (731 s), the speed-up was of 6.2 times for using the low-fidelity model with the 
AEM approach instead of the high-fidelity model in the solution of the inverse problem. On the 
other hand, the use of the low-fidelity model without accounting for the approximation errors 
resulted in a totally distinct posterior distribution in test-case (ii), as also evidenced from the 
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bad agreement between estimated and measured temperatures (see also Figure 14), despite 
the fact that the Markov chain was generated quite fast. Unfortunately, the application of the 
AEM approach requires proper priors (with limited variances), for the calculation of the 
approximation error statistics. 
 
Table 1. Statistics of the estimated Biot number and CPU times of the inverse problem solution 

Test-case Mean Standard Deviation 2.5% Quantile 97.5% Quantile CPU Time 
(i) 9.794 0.123 9.555 10.041 1.25 h 

(ii) 1.578 0.005 1.569 1.588 0.8 s 

(iii) 9.962 0.151 9.667 10.253 0.8 s 

 
It is instructive to note that the original uncertainties related to the Biot number before the 
solution of the inverse problem (represented by the prior information, the samples of which are 
shown in Figure 3), were significantly reduced when the information provided by 
measurements was taken into account through the likelihood function, thus resulting in the 
posterior distribution with samples shown by Figure 9 or Figure 17, and with the statistics 
presented in Table 1. 
 
 
 

3.2. Estimation of Heat Fluxes of Large Magnitudes [22–24] 
 
The physical model considered in this case study draws its foundation from the work of Orlande 
[22], which formulated both the forward and inverse problems and proposed employing the 
AEM within a Markov Chain Monte Carlo sampler based on the Metropolis-Hastings algorithm. 
Next, the AEM was employed as well in the context of the classical and Steady-State Kalman 
filter by Pacheco et al. [23,24]. Their findings are the subject of this section. 
 
The physical model comprises the flat plate shown in Figure 20. The objective of the forward 

problem is to evaluate the temperature 𝑇(𝐫, 𝑡) in the domain Ω, where 𝐫 = [𝑥 𝑦 𝑧]𝑇 is the 
position vector and 𝑡 is the time. The plate has dimensions 𝑎 × 𝑏 × 𝑐 such that 0 < 𝑥 < 𝑎, 0 <
𝑦 < 𝑏, 0 < 𝑧 < 𝑐. The top surface of the place – herein defined as 𝜕Ω1 = {𝐫 ∈ Ω | 𝑧 = 𝑐} – is 
subjected to a high-magnitude, focused heat flux 𝑞(𝑥, 𝑦, 𝑡), while the remaining boundaries – 

defined as 𝜕Ω2 – are thermally insulated. At last, the initial temperature is assumed uniform 
and equal to 𝑇0 = 300 K. The mathematical model is thus given by Eqs. (36a-d). 
 

 

Figure 20. Physical model considered in [22–24] 
 
 

𝐶(𝑇)
𝜕𝑇

𝜕𝑡
= ∇ ⋅ [𝑘(𝑇)∇𝑇], 𝐫 ∈ Ω, 𝑡 > 0 (36a) 
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    𝑘(𝑇)
𝜕𝑇

𝜕𝐧
= 𝑞(𝐫, 𝑡),                     𝐫 ∈ 𝜕Ω1, 𝑡 > 0 (36b) 

    
𝜕𝑇

𝜕𝐧
= 0,                                        𝐫 ∈ ∂Ω2, 𝑡 > 0 (36c) 

𝑇(𝐫, 𝑡) = 𝑇0,                               𝐫 ∈ Ω, 𝑡 = 0 (36d) 
 
A major challenge in both forward and inverse problems is that a large temperature range 
unfolds, such that the temperature effect on the thermal properties must not be disregarded. 
Indeed, the plate thermal properties are given in Eqs. (37a,b). 
 

𝑘(𝑇) = 12.45 + 0.014𝑇 + 2.517 × 10−6𝑇2 [W m−1 K−1] (37a) 

𝐶(𝑇) = 1324.75𝑇 + 3557900                       [J m−3 K−1] (37b) 
 
In this context, solving the forward problem comprises bestowing the function 𝑞(𝐫, 𝑡) in order 

to evaluate 𝑇(𝐫, 𝑡). The inverse problem involves thus employing experimentally measured 
values of 𝑇(𝐫, 𝑡) to estimate an unknown 𝑞(𝐫, 𝑡). Particularly in this problem, temperature 

measurements are assumed available whenever at the 𝑧 = 0 surface – that is the face opposite 
to where the heat flux is imposed.  
 
The numerical intricacies and high-dimensionality of this complete model compels the 
deployment of reduced order models to render the inverse problem computationally tractable. 
The complete derivation of this reduced model is herein suppressed for the sake of brevity and 
can be found in references [22–24]. Yet, it bears mentioning that its foundation lays in 

averaging the temperature in the 𝑧 direction, thus arising the average temperature 𝑇(𝐫, 𝑡), 

where 𝐫 = [𝑥 𝑦]𝑇 is the position vector. The domain Ω is thus the 𝑥𝑦 plane, with 0 < 𝑥 < 𝑎 

and 0 < 𝑦 < 𝑏, while 𝜕Ω = {𝐫 ∈ Ω | 𝑥 = 0 or 𝑥 = 𝑎 or 𝑦 = 0 or 𝑦 = 𝑏}. The mathematical model 

is shown in Eqs. (38a-c), where the constant thermal properties 𝑘∗ and 𝐶∗ are drawn from Eqs. 
(37a,b) being evaluated at a reference temperature 𝑇∗ = 600 K. 
 

𝐶∗
𝜕𝑇

𝜕𝑡
= 𝑘∗∇2𝑇 +

𝑞(𝐫, 𝑡)

𝑐
,        𝐫 ∈ Ω, 𝑡 > 0 (38a) 

   
𝜕𝑇

𝜕𝐧
= 0,                                         𝐫 ∈ 𝜕Ω, 𝑡 > 0 (38b) 

𝑇 = 𝑇0,                                          𝐫 ∈ Ω, 𝑡 = 0 (38c) 

 
At last, it bears mentioning that the reduced model provides only the value of the average 
temperature, while the temperature measurements are taken at the 𝑧 = 0 surface. To relate 
these quantities, approximations based on both the classical and improved lumped 
methodologies [25] were proposed in [22] and are presented in Eqs. (39a,b). An equation 

similar to Eq. (39b) was also derived in [22] to approximate the temperature at 𝑧 = 𝑐, shown in 
Eq. (39c). 
 

Classical Lumped: 𝑇(𝑥, 𝑦, 𝑧 = 0, 𝑡) = 𝑇(𝑥, 𝑦, 𝑡)                           (39a) 

Improved Lumped: 𝑇(𝑥, 𝑦, 𝑧 = 0, 𝑡) = 𝑇(𝑥, 𝑦, 𝑡) −
𝑐

6𝑘∗ 𝑞(𝑥, 𝑦, 𝑡) (39b) 

                                      𝑇(𝑥, 𝑦, 𝑧 = 𝑐, 𝑡) = 𝑇(𝑥, 𝑦, 𝑡) +
𝑐

3𝑘∗ 𝑞(𝑥, 𝑦, 𝑡) (39c) 

Before presenting the numerical results, it bears mentioning that in both reference papers 
[22,23], the complete model was solved considering reference profiles for 𝑞(𝐫, 𝑡) with the 
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objective of providing synthetic measurements with added Gaussian noise with zero mean and 
standard deviation of 1.25 K. Furthermore, in [22] the sought heat flux is a function of position 
only, while in [23] the time dependency is accounted for. For the sake of brevity, we will only 
discuss the latter here, focusing on calculating the approximation errors and the resulting 
estimates. 
 
Assuming time dependency on the heat flux brings a severe increase in complexity, for the 
number of unknowns is largely increased. Such complexity renders batch estimation 
approaches (such as MCMC) computationally intractable. The best alternative is thus resorting 
to recursive estimation. Therefore, the Kalman Filter [14,15] rises as a powerful candidate. Yet, 
calculating the approximation errors is not without its challenges, as will be discussed 
henceforth. The crux of such challenge lies in the need for consistency between the 
temperature fields of the complete and reduced models at each time step. Although the reader 
is referred to [23] for a thorough explanation thereof, we will next briefly present the rationale 
behind it. 
 
As mentioned above, a major challenge lies in maintaining consistency between the high- and 
low-fidelity models, so the calculated AEs bring meaningful information. Thus, at the beginning 
of each recursive step, it bears ensuring that the complete model be in the same state of the 
reduced model. In other words, the average temperature in the complete model must be made 

equal to 𝑇(𝑥, 𝑦, 𝑡). This is clearly an underdetermined problem – the number of volumes in the 
complete model grid is 𝑛𝑧 times larger than in the reduced model, where 𝑛𝑧 is the number of 

control volumes (CVs) in the 𝑧-direction. To address this problem, we consider a grid with 𝑛𝑧 =
3 (cf. Figure 21) with 𝑇1, 𝑇2 and 𝑇3 as the temperatures at the center of the CVs. We 

approximate 𝑇 as the arithmetic mean of these values and write finite-difference 
approximations for the temperatures at the boundaries 𝑧 = 0 and 𝑧 = 𝑐 in terms thereof. 

Thereafter, we employ Eqs. (39b,c), thus closing a system of three equations and three 
unknowns for each CV in the grid. Solving this system yields the approximations for 𝑇1, 𝑇2 and 

𝑇3 given in Eqs. (40a-c). These ensure consistency between high- and low- fidelity models, 
allowing for appropriate calculation of the AEs. With these in hand, we are ready to apply the 
Kalman Filter with the EEM. 
 

𝑇1 =
1

99
[80𝑇𝑏 + 27𝑇 − 8𝑇𝑡 +

3𝑞Δ𝑧

𝑘(𝑇𝑡𝑜𝑝)
] (40a) 

𝑇2 =
1

11
[−8𝑇𝑏 + 27𝑇 − 8𝑇𝑡 +

3𝑞Δ𝑧

𝑘(𝑇𝑡𝑜𝑝)
] (40b) 

𝑇3 =
1

99
[−8𝑇𝑏 + 27𝑇 + 80 𝑇𝑡 −

30𝑞Δ𝑧

𝑘(𝑇𝑡𝑜𝑝)
] (40c) 
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Figure 21. Schematic of three-node mesh in 𝑧-direction for calculating AEs 

 
The reference heat flux in this study is shown in Figure 22, with a small region being subjected 

to a heat flux of 107  W/m2. The synthetic measurements were obtained by solving the 
complete model with a converged grid and controlled time-stepping, thus ensuring that the 
present analysis is devoid of inverse crime. In Figure 23 one can observe the resulting 
temperature field and the respective synthetic measurements. For the sake of brevity, the 
results presented herein focus on the spatial distribution at the end of the numerical experiment 

(i.e. at 𝑡 = 2.0 s) and the time evolution at the center of the heated region, which we will 
henceforth refer to as the probed region. 
 

 

Figure 22. Exact heat flux to be estimated in this case study. 
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(a) 

 
(b) 

Figure 23. Temperature fields at 𝑧 = 0 and 𝑡 = 2.0 s in the complete model: a) exact 
values; and b) synthetic measurements. 

 
We first address the results obtained using the Classical Lumped Formulation. Figure 24 
presents the estimated heat flux at the probed region without and with the EEM. It is clearly 
shown that, in the absence of the EEM, the onset of nonlinearities takes its tool in the heat flux 
estimation. The estimates never arrive at the exact value and the 99% confidence intervals 
barely encompasses it. On the other hand, including the EEM in the estimation process yields 
significantly better estimates, meaning that the calculated AEs are indeed providing important 
corrections to the reduced model. It bears noticing also that despite the improvement in 
performance, the obtained estimated are somewhat unstable, with noticeable oscillation being 
observed. 
 

 
(a) 

 
(b) 

Figure 24. Time evolution of heat flux at the probed region with the Classical Lumped 
Formulation: (a) without; and (b) with EEM. 
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Next, we evaluate the results for the temperature at the probed region. It is shown in Figure 25 
that the temperature is accurately estimated, within the envelope of the 99% confidence 
interval throughout the numerical experiment. Taking a closer look at the respective residuals, 
however, a slight correlation is present, meaning that despite the progress made, there is still 
information not being fully recovered in the measurements. This is an expected result since 
this numerical experiment is devoid of inverse crime. Finally, analyzing the estimated 
temperature and heat flux maps at 𝑡 = 2.0 s in Figure 26 and comparing them with Figures 22 
and 23 evidences that the performance observed in the probed region is similar throughout the 
entire domain. 
 

 
(a) 

 
(b) 

Figure 25. Time evolution at the probed region with the Classical Lumped 
Formulation and EEM: (a) exact, synthetic and estimated temperatures; and (b) 

residuals. 
 

 
(a) 

 
(b) 

Figure 26. Results obtained using the Classical Lumped Formulation and EEM at 𝑡 =
2.0 s: (a) temperature; and (b) heat flux. 
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Next, we analyze the results obtained using the Improved Lumped Formulation. Similar to what 
was observed for the Classical Lumped Formulation, the effect of including the EEM in the 
estimation process is clearly shown in Figure 27, with some particularities to be pointed out. In 
the absence of the EEM, the estimated heat flux once again falls short of the exact values, 
although the confidence interval succeeds in encompassing them. This increase in the 
envelope width is purely due to the Improved Lumped Formulation, though. Nevertheless, as 
the EEM is included, we notice that the estimated values find the exact values with great 
accuracy. Furthermore, the results here lack the unstable behavior seen before, which is a 
noteworthy improvement. 
 

 
(a) 

 
(b) 

Figure 27. Time evolution of heat flux at the probed region with the Improved Lumped 
Formulation: (a) without; and (b) with EEM. 

 
More improvements in performance can be seen for the temperature estimation, as shown in 
Figure 28. We not only observe that the estimated temperatures follow the exact temperatures 
closely, but also that the residuals stay uncorrelated throughout the entirety of the numerical 
experiment. This means that the combination of the Improved Lumped Formulation and the 
EEM yields a framework where we can accurately estimate the sought heat flux, obtaining 
stable solutions and extracting all information possible from the temperature measurements. 
In Figure 29 it can be observed the estimated temperature and heat flux maps at 𝑡 = 2.0𝑠 
where once again we can infer a likewise performance in the remainder of the domain. 
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(a) 

 
(b) 

Figure 28. Time evolution at the probed region with the Improved Lumped 
Formulation and EEM: (a) exact, synthetic and estimated temperatures; and (b) 

residuals. 
 

 
(a) 

 
(b) 

Figure 29. Results obtained using the Improved Lumped Formulation and EEM at 𝑡 =
2.0 s: (a) temperature; and (b) heat flux. 
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Tutorial 15: Experimental identification of mobile heat sources   
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Abstract. This workshop deals with the study of detecting a mobile heat source 
on a plate using temperatures measured on the rear face. Initially, a numerical 
approach to the system is carried out to demonstrate the feasibility of the 
method. In order to identify the trajectory, shape, and intensity of a mobile heat 
source, a 3D finite volume model is developed. A parameterization of the 
unknowns is then performed in the model to identify the characteristics of the 
mobile heat source without making assumptions about its trajectory shape or 
spatial distribution and temporal evolution. The sensitivity analysis conducted 
helps define the identifiability of the model parameters. In this numerical 
approach, temperature data from the rear face is generated from another 3D 
finite element model different from the direct model used in the inverse 
procedure. An inverse heat conduction procedure (IHCP) is applied to these 
simulated measurements. A conjugate gradient method is implemented to 
identify the parameters of the problem, namely the different heat sources. The 
study examines the impact of measurement noise as well as the impact of the 
characteristics of the mobile source on the quality and accuracy of the 
identification. Thus, the trajectory and shape of the mobile source are identified 
and compared to the input data without making any assumptions about the 
characteristics of the mobile source. Subsequently, the identification process is 
implemented using real measurements obtained from an experimental setup 
specifically developed for this study. A continuous laser is used to heat the 
surface of a sample with dimensions of (50x50x4 mm). The laser position 
control is achieved through a fully controlled system, allowing the movement of 
a hot spot on the sample surface. Two rails are used in this experimental setup 
to enable 2D movement of the mobile heat source. On the rear face of the 
sample, an infrared camera measures the temperature field. Based on the 
temperature measurements, using a reduced 3D numerical model of the 
system, the trajectory, shape, and intensity of the heat source are identified over 
time. 
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List of acronyms: 
 

• IHCT: Inverse Heat Conduction Procedure 

• RMSR: Root Mean Square Residual 

• FVM: Finite Volume Method 

• MOR: Model Order Reduction 

• CGM: Conjugate Gradient Method 
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1. Introduction 

Heat transfer in a solid subjected to a moving heat source constitutes a pivotal aspect 
within various engineering disciplines, encompassing tribology, laser processing, machining, 
braking systems, and fire detection [1–4]. It is imperative to develop theoretical tools that can 
facilitate the design, control, and comprehension of the medium's behavior. Numerous studies 
have been published on this subject matter, all centered around the concept of mobile heat 
sources. The identification of mobile heat sources holds the potential for detecting material 
defects or anomalies in electronic component design. Several analytical models have been 
proposed for mobile source detection [5–9]. Beddiaf et al. [10] examine the iterative 
regularization method based on Alifanov's iterative regularization method for resolving the 
inverse problem of heat conduction in a three-dimensional plate. The objective is to ascertain 
the time-dependent intensity of a planar heat source by employing temperature measurements 
on the central region of the upper face of a small, thin steel plate. Two different configurations 
are investigated: the first involves a fixed heat source on the central region of the lower face, 
while the second entails a mobile heat source with a predetermined trajectory. The study 
evaluates the robustness of the approach in both scenarios, while accounting for 
measurements affected by noise. This fully numerical study allows the position and power of 
a moving heat source to be determined but requires knowledge of the shape of the source and 
its starting point. The detection of mobile heat sources commonly involves the utilization of 
inverse techniques, commonly known as Inverse Heat Conduction Problems (IHCPs). 
Inversion techniques are increasingly prevalent in the field of IHCP, primarily for parameter 
identification, characterization of convective exchange, material or friction interface, and 
boundary condition identification [11–14]. Numerous researchers have employed either 
analytical or numerical modeling to solve inverse heat conduction problems, whether for 
stationary or moving heat sources [15–17]. Inverse heat conduction problems are well known 
to be ill-posed in the Hadamard sense. Regularization methods provide a means to obtain 
accurate solutions for ill-posed problems by introducing an admissible bias. Several studies 
[18–21] present diverse approaches to increasing IHCP stability. Mohammadi et al. [22] 
present a heat source detection in medical field. Due to the highly vascular nature and 
increased perfusion and metabolism rates, tumors present elevated temperatures relative to 
their adjacent tissues. Building upon this observation, the authors proposed a method based 
on an analytical solution and temperatures measurement by infrared (IR) cameras in order to 
deduce crucial tumor parameters, including its depth and its radius. To validate the efficiency 
of their analytical approach, the researchers conducted a laboratory experiment employing 
Nobel Agar solution as a tissue phantom. As numerical models are complex, necessitating 
substantial computational resources and time, the utilization of model reduction techniques 
and novel machine learning methods in inversion processes is becoming increasingly 
prevalent [23,24].  

The purpose of this work is to estimate the intensity and spatial evolution of a mobile 
heat source on a plate, using temperature measurements at the rear face which is visible and 
accessible. No assumptions about the position, trajectory, shape and intensity of the source 
are made. The effects of the velocity of the source, measurement errors, and the error of 
parameters assumed to be known, such as thermal properties, are investigated. The 
developed model is based on the finite volume method. In order to solve the IHCP problem, 
the conjugate gradient method is used to compute the conjugate descent directions while 
considering an adjoint problem. The use of an adjoint method with a conjugate gradient 
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algorithm to minimize the LS-criterion has been discussed in several studies [25–28] both 
numerical and experimental [29–33]. This method requires a large number of iterations to 
converge. Thus, in order to reduce the calculation time, a reduced order model is used for the 
inversion process [34]. After a numerical study on the feasibility of mobile heat source 
identification, experimental results are presented. A moving laser is used to heat a steel plate.  
Using temperature measurements made by IR camera on the backside of the plate, the 
trajectory, the velocity, the shape and the intensity of the heat source produced by the laser 
are traced. 

2. Presentation of the moving heat source direct model 

2.1. Physical model 

The three-dimensional transient heat conduction of a parallelepiped body with 

dimensions L W H   subjected to a surface heat source on one of its surfaces is investigated. 

The plate's dimensions are L=W=50mm, and its thickness is H = 4mm. A Gaussian mobile 
heat source is applied on the upper face of the plate. Convection heat transfer is applied to all 
the faces but with different heat transfer coefficients. The studied model is presented in Figure 
1. Equation (1) provides the solution to the heat equation, while equation (2) specifies the 
corresponding boundary and initial conditions. 

 

Figure 1: Geometry and boundary conditions of the studied problem 

The ambient temperature (


) is assuming to be constant, and the material to be 

homogeneous and isotropic. The Table 1 gives the thermal properties and the two convective 
heat transfer coefficients, on the lateral surfaces and on lower and upper surfaces. We assume 
that T  = − , then 0T = . 

Table 1: The known parameters 

λ (W.m-1.K-1) 𝛼(m².s-1) hL(W.m-2.K-1) hZ (W.m-2.K-1) 

70  10x10-6  5 10  

 

( ) ( )( ), ,x t y t t  

( ),Zh   

( ),Lh   
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Where S  is the surface of the domain Ω. This 3D transient problem is solved by the finite 

volume method (FVM). 

2.2. Description of the finite volume method 

The FVM is used to solve the direct problem. The system is divided into regularly 
parallelepipeds. The number of elements along the x, y, and z axes are denoted as Nx, Ny, 

and Nz respectively. The total number of volumes is 
V x y z

N N N N=   . By integration of the 

equation (1), then using the divergence theorem we get the result given in equation (3) 
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The surface S  is divided into intS (internal domain) and extS (external domain) such that 

int extS S S= + . Thus, equation (3) becomes:  
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We obtain the discrete equation(5). 

 ( )
int

0
ext ext

i

i i i i i i i i i i i

S S S

T
cp v k S T h S T S

t
 


   −   +   −  =


    (5) 

Which can be expressed in matrix form as shown in equation(6). 
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 fCap T K T B  =  +   (6) 

Where Cap is the capacity matrix. K represents the conductivity matrix, which also 

includes the convective coefficient in the boundary terms. f
B  is a detailed surface model 

control matrix. T is the temperature vector of all the nodes in the system and T its derivative. 

  is the vector of imposed fluxes on each of the nodes on the upper face (z=H). An implicit 

scheme has been utilized to solve the numerical problem using a step time of 0.1t s = . 

2.3. Modal order reduction (MOR) 

The linear time-invariant system generated is given by equation (7). A state-space 
system is the mathematical representation of a physical model. It consist in an ODE linking 
input, output and space state variable.  

 
( ) ( ) ( )

( ) ( )

fCapT t K T t B t

Y t C T t

 = + 


=

 (7) 

Where C  is the observation matrix, ( )Y t is the output temperature vector, ( )t is the 

input vector and fB is a detailed upper surface model control matrix. In our configuration, the 

output vector represents the surface temperatures at z=0. ( )t represents the input of the 

system. We write the system given by equation (7) in the modal base: 

 
( ) ( ) ( )

( ) ( )

t t t

Y t t

  



=  +


= 

 (8) 

 

With 
1M T −=  , then 

1 1M Cap K M− − =    , 
1 1

fM Cap B− − =   and MC= .  

The matrix M is the matrix of 
V

N linearly independent eigenvectors (Modal Matrix). The 

eigenvalues 
vn are the values that satisfy the expression given in equation (9). 

 ( )det 0A I− =  (9) 

The matrix    is diagonal and formed by these eigenvalues: 

 ( )
vndiag  =  (10) 

Subsequently, the model reduction technique is based on modal reduction through 
Amalgam Reduction Order Modal Model (AROMM) [34,35]. The temperature, solution of this 

model is noted ( ), ,Y x y t .  
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2.3.1. MOR analysis and validation 

The choice of the right order of reduction is defined in order to maintain the model error 
lower than the measurement noise. The noise distribution follows a normal distribution with a 
mean value 0N C =   and a standard deviation 0.1N C =   at the sampling frequency

10sf Hz= . This standard deviation value is the smallest considered in this article, 

guaranteeing the utilization of the most precise reduced model.  Figure 2 presents the 
distribution of this noise signal. 

 

  

Figure 2: Values and repartition of the numerical noise 

 

The subsequent approach is used to estimate the error related to the utilization of a 
reduced-order model. We sequentially computed the error caused by the input heat flux 

i on 

each node. While one heat flux is active, the others are equal to zero. The resultant error is 
denoted as 

ie Thus, the subsequent matrix of error is defined by equation (11). 

 1 2, ,..., ,...,i pe e e e e =    (11) 

With each value error 
i

e calculated by the difference between the reduced model and the 

complete one: 

 ( )
2

1 1

tNM
m m

i n n

m n

e Y Y
= =

= −  (12) 

We use the RMSR (Root Mean Square Residual) as an error estimator (Eq. (13)). The 
RMSR should be equal to or less than σN. It indicates the square root of the average difference 

between the temperatures calculated using the complete model Y and those calculated using 

the reduced model Y  for various modes.  

 
1

1
;

p

i
i i

it

e
RMSR RMSR RMSR

N M p =

= =


  (13) 
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Figure 3 presents the variation of the RMSR as a function of modes number. When 
additional modes are considered, the temperature field computed from the reduced model 
becomes more similar to the one calculated using the full model. However, the calculation time 
of the reduced model increases with the number of modes considered. This evolution is plotted 
in Figure 3. Therefore, we select the first order of reduction that satisfies the following 
inequality: 

 N
RMSR   (14) 

 

Figure 3: Evolution of the RMSR for different modes 

 

Based on this error analysis, the reduction order is defined as 1200Ro = . In fact, the 

highest RMSR value for this reduced order mode is lower than the standard deviation of the 
imposed numerical noise 0.1N C =  . The computation time is significantly reduced. Table 2 

summarizes the reductions in computational time of the reduced model compared to the full 
model. We can notice that the computation time is also reduced only by calculating into the 
modal basis. 

 

Table 2: Characteristics of the reduced model 

 Complete 
model 

Complete model in the modal 
basis 

Reduced model 
(Ro=1200) 

Execution time 
(s) 

80 50 0.9 

RMSR (K) - - 0.012 

 

The choice of a reduced model possessing an RSMR 10 times smaller than the imposed 
noise is defined by a computation time that, despite this restrictive constraint, remains less 
than one second. 
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3. Inversion procedure  

The objective of the IHCP is to identify the shape, the intensity, the trajectory and the 
velocity of the moving heat source using the thermal temperature of the rear surface. This 
problem can be formulated as a conventional IHCP, with the objective of minimizing a quadratic 
criterion J(ϕ). To solve this ill-posed problem, the conjugate gradient method (CGM) algorithm 
is used, with the sensitivity and adjoint problems. The CGM is a widely used iterative 
optimization method for solving large-scale linear systems. In each iteration, the algorithm 
calculates the residual of the current approximation and determines conjugate search 
directions to update the solution. The residual is then minimized along the conjugate directions 
through a descend direction. This process continues until the desired accuracy is achieved or 
the maximum number of iterations is reached. The algorithm is especially efficient for systems 
with sparse matrices and can provide quicker convergence compared to alternative methods. 
To ensure convergence, it is important to carefully select appropriate termination criteria and 
the choice of the descend direction. The associated objective function J(ϕ) of the inverse 
problem is given by the following equation: 

 
2( ) ( )

mesS

J Y Y ds dt = −     (15) 

Where Y  are the measured or simulated temperatures at the rear surface.  

3.1. Sensitivity problem  

The problem's formulation is beneficial in determining the descent depth estimation in 
the descent direction. The temperature variation induced by an alteration of the unknown 

parameters ( )t is denoted ( ), , ;T x y z t , for partial differential equations (PDE) satisfied by the 

temperature ( ) ( ), , ; , , ;T T x y z t T x y z t + = +  with heat source ( ) ( )t t  = + with ε→0. The 

sensitive function is defined by equation (16).  

 
0

lim
T T

T 






+

→

−
=  (16) 

The temperature T is substituted by T , the impulse response to a heat flux in equations 

(1) and (2), in order to calculate the descent depth:  

 

( )
( , )

( , ) 0 ; , 0

( , ) 0 ;

( , ) 0;

( ,0) 0;

T

T

T M t
Cp k T M t M t

t

k T M t n M

k T M t n M

T M M


 

 






  −  =   



  − =  

  =   −

=  

 (17) 

3.2. Adjoint problem 

The task involves calculating the cost function's gradient during each iteration of the 

CGM algorithm through the utilization of an adjoint function ( ), , ;x y z t . The Lagrangian 

( , , )L T    associated with the direct problem is defined by: 
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 ( )
( , )

( , , ) ( ) ( , ) ( , )
T t

L T J t cp k T t dv dt
t


      



 
= +    −    

 
   (18) 

Assuming that the variables T ,   and  are independent of one another: 

 ( )2( ) T

fL C T Y dt Cap T K T B dt =  −  +   −  −     (19) 

The development of this method is much more documented in the literature [25–
28,36,37].The adjoint system is given by equation (20). 

 
( )

2 ( )T T T

T
f

Cap K C C T Y

J B

 



  +  = −    −

 = − 

 (20) 

3.3.  Conjugate gradient algorithm 

 

Figure 4 : Conjugate gradient algorithm with adjoint variable calculation. 

The algorithm for solving the inverse problem by the conjugate gradient method with the 
calculation of the adjoint variable is presented in Figure 4. 

The stopping criteria of the algorithm are: 

a) The Morozov’s criteria (Discrepancy criteria) 

This condition impose to the inversion procedure to perform a solution with an error 

higher or equal to the standard deviation of the noise N
 .  
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( )
2

1 1

( 1)

tNM
m m

n n

m n

N

t

Y Y

M N
= =

−


−


 (21) 

b) The maximum iteration 

For the CGM, the maximum number of iteration is given in most of the works as a number 
of parameter to identify [27]. 

4. Numerical study 

This technique gives also the possibility to identify a multi mobile heat source. In order 
to validate this technique of identification for multi moving heat source, a case with three 
different moving sources is simulated. The total power of each source is presented in Figure 
5. 

 
Figure 5:  Evolution of the power of the three sources 

 

The first source follows a circular path centered in the middle of the upper face. The 
second source follows the trajectory given in the Figure 6. The third one is fixed in the middle 
of the plate.  

 

Figure 6: Trajectory and speed of the second source 

 

331/339



 

 

 

 

METTI 8 Advanced School   Ile d’Oléron, France 

Thermal Measurements and Inverse Techniques             Sept. 24th – Sept 29th, 2023 

 

Tutorial 15: Experimental identification of mobile heat sources – page 12 

On the basis of heat flux maps given in Figure 7, it is possible to identify a large number 
of sources, even if the intensity of the sources is varying. The same remark could be made 
about the spreading of the identified heat flux which is more important than the real one. 

 

 

 

 

 

 

 

 

 

 

t = 5s 

  

 

 

 

 

 

 

 

 

 

t = 20s 

  

 

 

 

 

 

 

 

 

t = 50s 

  

             a) b)  

Figure 7: Heat flux map at surface (z=H) of the solid at (t=5s, 20s, 50s). a) Impose flux; 
b) Identified flux 

There are no hypotheses about the number or of sources and their trajectories. From 
Figure 8 (a), it is clear that the identified total power is in good agreement with the total injected 
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power. The residual temperature (Figure 8 (b)) are as expected: a cloud of points centered on 
zero, normally distributed according to a standard deviation σ≈0.1K.  

 

 

 

(a) 

 

(b) 

Figure 8: Identification results: (a) Total power identified in the multiple heat mobile 
source case, (b) Temperature residual 

5. Experimental study 

In this section, we will observe the feasibility of detecting a mobile heat source based on 
experimental data. Firstly, we will provide a comprehensive overview of the experimental setup 
employed for this study. Subsequently, we will present the identification results achieved for 
different configurations. 

5.1. Experimental setup 

Figure 12 shows a diagram of the experimental setup used in this study. Figure 13 
provides a picture of the experimental test bench. We use a continuous laser to heat one side 
of a sample that measures (50x50x4mm). The laser moves across the sample's surface using 
a displacement system with two rails, allowing motion in two dimensions. Specifically, a 
690mm rail is attached to a second one (length 1300mm). The rails are controlled precisely 
using an automation system (ISEL-Automation C-142/4, which works with the Kynon Pro 
software). The software allows us to control the movement and speed of the rails using a set 
of instructions. On the opposite side of the sample, an infrared camera (INFRATEC IR-9400) 
is placed to capture thermal measurements of that particular side. The temperatures measured 
by the high-resolution IR camera are interpolated onto the nodes of the mesh of the reduced 
model used for the estimation procedure. Furthermore, thermocouples are placed on the 
heated surface to verify the obtained results by the inverse method. 
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Figure 9 : Layout of the experimental bench 
 

 

a) IR camera (INFRATEC 9400) – b) Sample holder – c) Sample – d) Temperature data 
acquisition device from thermocouple – e) IR camera software (IRBIS3.1) – f) Shutter – g) rail 
control software – h) Laser’s generator – i) Laser – j) rails 

 

 
 
 

a 
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5.2. Experimental results 

The laser is moving at a linear velocity of v=5mm.s-1, following a circular trajectory with 
a radius of Rc=10mm, whose center is identical to that of the sample. The starting point is 
located at position pi=[15,25]mm. The identified and the experimental laser’s trajectory are 
compared in the Figure 10.a. On this figure are plotted the location of thermocouples. Indeed, 
to validate the accuracy of the method, thermocouples are attached to the heated surface. The 
temperatures calculated from the identified fluxes are compared to these measurements in 
Figure 10.b.  

 
 

a)  b)  
Figure 10 : Identification results. a) Path of the laser and thermocouple positions. b) 

Measured temperature of the heated face compared to the calculated temperature using 
identified heat source. 

First of all, the identified path is accurate (Figure 10.a); the circularity is well shown with 
a small gap between the input trajectory and the identified one. The difference is less than 
1mm. Regarding the temperatures of the thermocouples, two trends can be distinguished. The 
first concerns the thermocouples closest to the heating zone, with the largest difference 
observed for thermocouple 2. The other thermocouples provide good accuracy with the 
calculation, assumed the errors associated with determining their exact position through image 
analysis. Based on these experimental results and validation, it can be concluded that the 
method accurately identified the characteristics of the moving heat source. Moreover, the 
temperature residuals (Figure 11) have the form of a zero-centered scatterplot with a standard 
deviation equivalent to the standard deviation of the experimental blank noise. The mean 
power identified from this experimental technique represents 70% of the laser’s power. The 
losses may represent the reflected flux by the sample. 
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Figure 11 : Temperature residual 

 

Figure 12.a illustrates the thermal maps captured on the rear face at different step time. 
These measurements correspond to the original data obtained from the infrared camera. The 
reduced model is constructed with a spatial discretization of (51x51) on the (Ox, Oy) plane. 
The thermal signature generated by the movement of the source is clearly visible. In Figure 
12.b is plotted the mapping of the identified surface heat fluxes. It is notable that the power 
distribution of the source exhibits a Gaussian shape, consistent with the laser beam profile 
specified by the supplier (Dantech). No significant numerical signature arising from the 
interplay between transport and diffusion phenomena is observed at this velocity, which 
confirms the results obtained during the numerical investigation.  
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t=1s  

 

 

 

 

 

t=9s 

  

t=18s 

  

 a)   b)   

Figure 12 : Representation of the measured temperatures and the identified heat 
fluxes at different times for circular path. a) Thermal measurement of the rear face. b) 

Identified heat flux on the front side 

  

Identified path 
Experimental 
path 

Identified path 
Experimental 
path 

Identified path 
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6. Conclusion 

This study presents the identification by inverse method of a moving heat source. A 
reduced model, based on the model reduction using modal base reduction method with the 
amalgamation method, has resulted in a significant gain in computation time. The inversion 
process is performed using the conjugate gradient method and the reduced model. This tool 
has been applied to the detection of surface moving heat sources. A dedicated experimental 
setup has been designed and implemented to validate this technique. One side of the sample 
is excited by a moving laser, and temperatures on the opposite side are measured using an 
infrared camera. A circular trajectory test has been performed and the results have been 
validated by comparing the thermal measurements obtained from thermocouples on the upper 
surface with the recalculated temperatures at the same positions. In this tutorial, participants 
will manipulate raw experimental data, process them, implement them into the measurement 
inversion code, and analyze the results. Future prospects are to create a quasi-real-time 
monitoring of moving heat sources for diverse industrial applications such as welding or 
machining processes. 
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Finding ‘causes’ from measured ‘consequences’ using a mathematical model linking the two is 
an inverse problem. This is met in different areas of physical sciences, especially in Heat 
Transfer. Techniques for solving inverse problems as well as their applications may seem 
quite obscure for newcomers to the field. Experimentalists desiring to go beyond traditional 
data processing techniques for estimating the parameters of a model with the maximum 
accuracy feel often ill prepared in front of inverse techniques. In order to avoid biases at 
different levels of this kind of involved task, it seems compulsory that specialists of 
measurement inversion techniques, modelling techniques and experimental techniques share 
a wide common culture and language. These exchanges are necessary to take into account the 
difficulties associated to all these fields. It is in this state of mind that this school is proposed. 
The METTI Group (Thermal Measurements and Inverse Techniques), which is a division of the 
French Heat Transfer Society (SFT), has already run or co- organized seven similar schools, in 
the Alps (Aussois, 1995 and 2005), in the Pyrenees (Bolquère-Odeillo, 1999), in Brasil (Rio de 
Janeiro, 2009), in Bretagne (Roscoff, 2011), in Pays Basque (Biarritz, 2015) and in 
Porquerolles island (Porquerolles 2019). For this eighth edition the school is again open to 
participants from the European Community with the support of the Eurotherm Committee.

http://iusti.cnrs.fr/metti7
http://iusti.cnrs.fr/metti7
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